Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hope for the Honey Bee?

04.08.2014

Peptide-polyketide antibiotic from the pathogen that causes American Foulbrood

Infections with American foulbrood can destroy entire bee populations. A team of German and Dutch researchers has now isolated metabolic products of the pathogen that causes it, Paenibacillus larvae. The structures of the products have been identified, providing insights into the unusual biosynthetic pathways by which they are made. These new findings could help to clarify the mechanisms of infection and thus to find points of attack for effectively combating bee disease. As the researchers report in the journal Angewandte Chemie, these paenilamicins have antibiotic effects that may also be of use in human medicine.


The honey bee is one of the most important pollinators in our agricultural and subnatural ecosystems. Our supply with fruit, nuts, and vegetables depends significantly on the fact that enough honey bees fly to the flowers of these plants. In recent years, pesticides and other environmental factors have posed massive health threads to bees. Infectious diseases can cause the death of bee populations. The American foulbrood of bees is a frequently encountered notifiable animal disease which causes infected larvae to essentially disintegrate.

Currently, not enough is known about the molecular mechanisms of the infection to effectively combat this disease. A team at the Technical University of Berlin, the Institute for Bee Research in Hohen Neuendorf, and the University of Leiden (Netherlands) has now gained some new insights: The genome of the pathogen contains genes for an interesting class of natural compounds, peptide-polyketide hybrids with antibacterial and antimycotic effects. The researchers found the special biosynthetic pathways for the formation of these metabolites, which does not use ribosomes, to be fascinating.

The team headed by Roderich Süssmuth and Elke Genersch was able to isolate several of these paenilamicins. They were then able to determine their structures and to characterize their amazing bioactivity: The bacteria release these compounds after they have infected bee larvae in order to keep competitors at bay. Paenibacillus larvae thus effectively kills off the bacterium Paenibacillus alvei in the intestines of the larvae, for example.

The scientists hope that their new insights into the paenilamicins and their biosynthetic pathways will lead to new approaches for combating foulbrood. In addition, the antibiotic effects of these substances could be a starting point for the development of novel human and veterinary pharmaceuticals.

About the Author

Dr Roderich Süssmuth is Professor for Chemical Biology at Technische Universität Berlin. His main specialty is the discovery and biosynthesis investigation of new secondary metabolites from microorganisms and their profiling as antiinfective drugs. He is a Fellow of the Cluster of Excellence “UniCat” coordinated by TU Berlin.

Author: Roderich Süssmuth, Technische Universität Berlin (Germany), http://www.biochemie.tu-berlin.de/

Title: Paenilamicin: Structure and Biosynthesis of a Hybrid Nonribosomal Peptide/Polyketide Antibiotic from the Bee Pathogen Paenibacillus larvae

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201404572

Roderich Süssmuth | Angewandte Chemie

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>