Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hope for the Honey Bee?

04.08.2014

Peptide-polyketide antibiotic from the pathogen that causes American Foulbrood

Infections with American foulbrood can destroy entire bee populations. A team of German and Dutch researchers has now isolated metabolic products of the pathogen that causes it, Paenibacillus larvae. The structures of the products have been identified, providing insights into the unusual biosynthetic pathways by which they are made. These new findings could help to clarify the mechanisms of infection and thus to find points of attack for effectively combating bee disease. As the researchers report in the journal Angewandte Chemie, these paenilamicins have antibiotic effects that may also be of use in human medicine.


The honey bee is one of the most important pollinators in our agricultural and subnatural ecosystems. Our supply with fruit, nuts, and vegetables depends significantly on the fact that enough honey bees fly to the flowers of these plants. In recent years, pesticides and other environmental factors have posed massive health threads to bees. Infectious diseases can cause the death of bee populations. The American foulbrood of bees is a frequently encountered notifiable animal disease which causes infected larvae to essentially disintegrate.

Currently, not enough is known about the molecular mechanisms of the infection to effectively combat this disease. A team at the Technical University of Berlin, the Institute for Bee Research in Hohen Neuendorf, and the University of Leiden (Netherlands) has now gained some new insights: The genome of the pathogen contains genes for an interesting class of natural compounds, peptide-polyketide hybrids with antibacterial and antimycotic effects. The researchers found the special biosynthetic pathways for the formation of these metabolites, which does not use ribosomes, to be fascinating.

The team headed by Roderich Süssmuth and Elke Genersch was able to isolate several of these paenilamicins. They were then able to determine their structures and to characterize their amazing bioactivity: The bacteria release these compounds after they have infected bee larvae in order to keep competitors at bay. Paenibacillus larvae thus effectively kills off the bacterium Paenibacillus alvei in the intestines of the larvae, for example.

The scientists hope that their new insights into the paenilamicins and their biosynthetic pathways will lead to new approaches for combating foulbrood. In addition, the antibiotic effects of these substances could be a starting point for the development of novel human and veterinary pharmaceuticals.

About the Author

Dr Roderich Süssmuth is Professor for Chemical Biology at Technische Universität Berlin. His main specialty is the discovery and biosynthesis investigation of new secondary metabolites from microorganisms and their profiling as antiinfective drugs. He is a Fellow of the Cluster of Excellence “UniCat” coordinated by TU Berlin.

Author: Roderich Süssmuth, Technische Universität Berlin (Germany), http://www.biochemie.tu-berlin.de/

Title: Paenilamicin: Structure and Biosynthesis of a Hybrid Nonribosomal Peptide/Polyketide Antibiotic from the Bee Pathogen Paenibacillus larvae

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201404572

Roderich Süssmuth | Angewandte Chemie

More articles from Life Sciences:

nachricht Scientists call for improved technologies to save imperiled California salmon
14.12.2017 | NOAA Fisheries West Coast Region

nachricht Cardiolinc™: an NPO to personalize treatment for cardiovascular disease patients
14.12.2017 | Luxembourg Institute of Health

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Protein Structure Could Unlock New Treatments for Cystic Fibrosis

14.12.2017 | Life Sciences

Cardiolinc™: an NPO to personalize treatment for cardiovascular disease patients

14.12.2017 | Life Sciences

ASU scientists develop new, rapid pipeline for antimicrobials

14.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>