Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Homing in on cancer with a comprehensive measurement method


Whether a tumour develops from individual cancer cells and whether metastases are formed depends on many factors in the affected tissue. A greater understanding of a tumour’s complex switch and control circuits could help to combat cancer in a more targeted fashion. Researchers at the University of Zurich have come up with an imaging method that is able to simultaneously visualize a previously unachieved number of factors involved in cancer.

Cancer is the second most common cause of death in Switzerland. There are many reasons why in the era of cutting-edge medicine it is still difficult to cure this disease.

A tumour may, for instance, consist of different tumour cell subpopulations, each of which has its own profile and responds differ-ently to therapy – or not. Furthermore, the cancer cells and the healthy cells in the body interact and communicate with one another.

How a tumour then actually develops and whether metastases form depends on which signals a tumour cell receives from its environment. With the development of a new method the team around Prof. Bernd Bodenmiller from the Institute of Molecular Life Sciences at the University of Zurich – in cooperation with ETH Zurich and University Hospital Zurich – has suc-ceeded in comprehensively profiling and visualizing tumour cells from patient samples. This promising method has now been published in “Nature Methods”.

New imaging method – major opportunity

Setting out to determine a tumour’s cell profile, its neighbourhood relationships and the circuit struc-ture within and in between cells is a highly complex endeavour. This is because the biomarkers, i.e. the specific molecules of the various cell types and their circuits, have to be measured in their spatial relationships.

“With our method it is possible to obtain a comprehensive picture using a novel imaging technique that currently can simultaneously record 32, and in the near future more than one hundred biomarkers”, explains Bernd Bodenmiller, the study coordinator. Furthermore, thanks to state-of-the-art imaging the information about the cells’ neighbourhood relationships is kept and their direct impact on the cellular switch and control circuits can be visualised.

The new technique is based on methods which are already routinely used in hospitals – with two im-portant innovations. First, the biomarkers are visualised using pure metal isotopes instead of dyes. To do so, biomarkers on very thin tissue sections are labelled with antibodies. The antibodies are cou-pled to the pure metal isotopes.

Then tiny pieces of tissue are removed with a laser system devel-oped by Prof. Detlef Günther from the ETH Zurich, and the metal isotopes of the pieces are measured with a mass spectrometer which can determine the mass and quantity of the individual metal isotopes. “This trick gets round the problem of the limited number of colours in the analysis of biological sam-ples”, comments Bodenmiller.

Secondly, information about the cells, and their control circuits, is no longer qualitative. With the new measurement method it is possible to precisely determine which cells experience what effect and to which extent. In this way the weak points of the control system can be pinpointed and this helps in the development of new therapeutic approaches. This is the reason, so Bodenmiller, why it is becoming increasingly important to understand these interactions for diagnosis and therapy.

Customised treatment is the goal

The initial measurement results of the new biomarker technique for breast cancer have revealed the heterogeneity of tumours. As a consequence of major growth, some tumours suffer from oxygen defi-ciency on the inside, other misuse the body’s own immune cells to drive their growth. Cell-cell interac-tion and cell location in the centre or on the edges of the tumour also have a decisive influence. One thing is clear: no tumour is like any other and Bodenmiller believes that treatment should reflect this. In a next step his research team wishes to use the new measurement method to explore the roles played by control circuits and cell communication in metastasis formation.

Charlotte Giesen, H. A. O. Wang, Denis Schapiro, Nevena Zivanovic, Andrea Jacobs, Bodo Hatten-dorf, Peter J Schüffler, Daniel Grolimund, Joachim M Buhmann, Simone Brandt, Zsuzsanna Varga, Peter J. Wild, Detlef Günther & Bernd Bodenmiller. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nature Methods, March 2014. DOI:10.1038/nmeth.2869

Prof. Bernd Bodenmiller
Institute of Molecular Biology
University of Zurich
Tel: +41 (0)44 635 31 28

Bettina Jakob
Media Relations
University of Zurich
Tel. +41 44 634 44 39
Email: bettina.

Weitere Informationen:

Bettina Jakob | Universität Zürich

Further reports about: ETH Furthermore Molecular biomarkers isotopes measurement relationships technique tumour tumours

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>