Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Homebound termites answer 150-year-old evolution question

Evolution of sterility potentially explained among social insects

Staying at home may have given the very first termite youngsters the best opportunity to rule the colony when their parents were killed by their neighbors. This is according to new research supported by the National Science Foundation and published today in the Proceedings of the National Academy of Sciences.

Researchers say the incentive to remain home with siblings and inherit the parents' estate could be the missing link to a question posed nearly 150 years ago by evolution theorist Charles Darwin. He wondered how natural selection could favor traits that reduce reproductive success among worker offspring in highly social insects.

This is especially curious because Darwin argued for small biological changes that result in greater chances of survival and successful reproduction over time. But social insects, ants, bees, wasps and termites colonies in particular can have over a million sterile and/or non-reproductive workers and soldiers, which seemed counterintuitive.

Research conducted by biologists at the University of Maryland, College Park shows that when two neighboring termite families meet within the same log, one or both families' kings and queens are killed and a new, merged, cooperative colony results. Replacement "junior" kings and queens then develop from either or both colonies' non-reproducing, worker offspring, and termites from the two families may even interbreed.

Pheromones produced by healthy kings and queens that normally suppress gonad development in worker or "helper" classes are absent or reduced when kings and queens are killed. As a result, suppression is lifted and nonrelated, "sterile," helper offspring from both colonies are able to become new "reproductives" and assume the throne.

"Assassination of founding kings and queens may have driven young termite offspring to remain as non-reproducing workers in their birth colonies," says lead researcher and University of Maryland professor Barbara L. Thorne. Rather than risking dangerous attempts at independent colony initiation outside the nest, remaining at home may have given these first termites a better opportunity to become reproducers by inheriting their parents' throne.

Bobbie Mixon | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Here comes the long-sought-after iron-munching microbe
25.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Novel method to benchmark and improve the performance of protein measumeasurement techniques
25.10.2016 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>