Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Holy glycosylation! New 'bat signal' flags distressed cells in childhood genetic diseases

13.06.2012
New research in the FASEB Journal details the novel use of green fluorescent proteins to search for known and previously unknown disabled genes in children with glycosylation-related diseases

Just as Gotham City uses the Bat Signal to call for Batman's aid, a new tool developed by scientists from the Sanford-Burnham Medical Research Institute in La Jolla, California, should serve as the cellular equivalent for children with glycosylation disorders, sometimes called "CDG syndromes."

In a new report appearing online in The FASEB Journal (http://www.fasebj.org), scientists describe how they used a green fluorescent protein to identify the presence of genes—known and unknown—associated with a wide variety of glycosylation-related diseases. By being able to identify exactly which genes are defective, researchers can develop treatments and therapies to correct the root causes of these diseases rather than merely treating the symptoms.

Glycosylation is an enzymatic process that coats proteins, lipids or other organic molecules with sugar molecules. It helps cells "stick" together, and proteins fold and work properly, among other things. When this process does not function correctly, it causes diseases involving intellectual disability, digestive problems, seizures and low blood sugar.

"We hope this glowing protein will help light the path for the discovery of new genes that cause genetic disorders in children," said Hudson Freeze, Ph.D., a senior researcher involved in the work from the Genetic Disease Program at Sanford-Burnham Medical Research Institute in La Jolla, California. "It's not Harry Potter's magic wand, but we hope it will offer a way to test for new therapies in these kids. They're counting on us."

To make this advance, Freeze and colleagues engineered cells from children with glycosylation disorders so the cells would glow to indicate when there was a glycosylation problem related to a defective or missing gene. Once the problematic, glowing cells were "rescued" by inserting a healthy gene into the cell or correcting a defective gene's function, the cells stopped glowing. This new tool may be used in high-throughput screening to identify therapeutic molecules that improve glycosylation in defective cells, including stem cells. In addition, this advance may serve as the foundation for a new diagnostic tool for patients.

"These glowing proteins serve as a hotline between distressed cells and researchers hoping to restore their normal function," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "Knowing when and where there are cells with flawed glycosylation pathways should allow researchers to rapidly screen for compounds that may have therapeutic potential."

Receive monthly highlights from The FASEB Journal by e-mail. Sign up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal (http://www.fasebj.org) is published by the Federation of the American Societies for Experimental Biology (FASEB) and is the most cited biology journal worldwide according to the Institute for Scientific Information. In 2010, the journal was recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century. FASEB is composed of 26 societies with more than 100,000 members, making it the largest coalition of biomedical research associations in the United States. Celebrating 100 Years of Advancing the Life Sciences in 2012, FASEB is rededicating its efforts to advance health and well-being by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Marie-Estelle Losfeld, Francesca Soncin, Bobby G. Ng, Ilyas Singec, and Hudson H. Freeze. A sensitive green fluorescent protein biomarker of N-glycosylation site occupancy. FASEB J. doi:10.1096/fj.12-211656 ; http://www.fasebj.org/content/early/2012/06/11/fj.12-211656.abstract

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

More articles from Life Sciences:

nachricht Shrews shrink in winter and regrow in spring
24.10.2017 | Max-Planck-Institut für Ornithologie

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Shrews shrink in winter and regrow in spring

24.10.2017 | Life Sciences

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>