Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hodgkin Lymphoma - New Characteristics Discovered

08.10.2008
Researchers are still discovering new characteristics of Hodgkin lymphoma, a common form of cancer of the lymphatic system. The malignant cells are derived from white blood cells (B cells), but have lost a considerable part of the B cell-specific gene expression pattern.

Björn Lamprecht and Dr. Stephan Mathas (Max Delbrück Center for Molecular Medicine, MDC, Berlin-Buch and Charité - Universitätsmedizin Berlin, Germany) have now demonstrated the production of interleukin 21 (IL-21) in the tumor cells of Hodgkin lymphoma. IL-21 promotes the growth of cancer cells and helps them evade immune system detection (Blood*, Vol. 112. N0. 8, 2008, 3339-3347).

Until now IL-21 was thought to be produced only by T cells, another group of immune cells. Blocking IL-21 production could lead to the development of new therapy strategies for Hodgkin lymphoma in the future, according to the researchers in Professor Bernd Dörken's laboratory, who collaborated with researchers at the University Tor Vergata, Rome (Italy).

It was not until 1994, some 160 years after Hodgkin's lymphoma (HL) was first described by the British physician Thomas Hodgkin (1832), that - using molecular biological methods - scientists discovered that the disease originates from the white blood cells, the B cells. They noticed, however, that the malignant Hodgkin/Reed-Sternberg (HRS) cells of Hodgkin lymphoma (HL) exhibit a phenotype and characteristics that are considerably altered. Although HRS cells are derived from B cells, they have lost the expression of most of the B cell genes due to reprogramming.

The research hypothesis of the just-published paper was that the tumor cells, due to the loss of many B-cell specific genes, need alternative signaling pathways to maintain their malignant growth. As Dr. Mathas explained, "Reprogramming can provide the cells of Hodgkin ymphoma with this survival advantage." Hence, the researchers were searching for factors that normally do not originate from B cells. They found what they were looking for in the gene for the cytokine IL-21.

Different Functions of IL-21
It has only been a few years since IL-21 was discovered in T cells. The function of IL-21, however, varies greatly depending on the kind of cell. In some cell types IL-21 stimulates the body's protection program, which researchers call programmed cell death or apoptosis. Each cell contains this apoptosis program so that it will self-destruct when it is altered or defective. This prevents the defective cell from damaging the entire organism.

Thus, IL-21 stimulates the T cells of the immune system and, for instance, drives cells of the chronic-lymphatic leukemia of the B-cell type (B-CLL) to apoptosis. By contrast, in T-cell leukemias, IL-21 does just the opposite and stimulates malignant growth. For the first time, the researchers from Berlin and Rome were able to show that IL-21 is produced by lymphatic cells originally derived from B cells. IL-21 activates a specific signaling pathway (STAT3), thus up-regulating the expression of a group of specific genes in HRS cells which support the unchecked growth and survival of HRS cells.

IL-21 also activates a chemoattractant for cells which suppress the immune system

On top of that, according to further findings of the researchers, IL-21 activates a protein (MIP-3 alpha) in the HRS cells that attracts a group of T cells to the tumor which suppress the immune system. In the healthy organism, these regulatory T cells keep the immune system in check and prevent excessive immune responses.

In proximity to the HRS cells there are a large number of these regulatory T cells. Attracted by MIP-3-alpha, they can suppress an effective immune defense of the body against the HRS cells. The production of such chemoattractants could, according to the researchers, also be a cause for why Hodgkin lymphoma contains so few tumor cells. They comprise merely 0.1 to one percent of the tissue.

Animal experiments have shown that in immunological diseases like rheumatoid arthritis and lupus erythematosus, a disease accompanied by symptoms such as skin changes and inflammation of blood vessels and joints, these symptoms can be significantly improved if IL-21 is inhibited. "If we could block IL-21 or also MIP-3 alpha in human tumor cells," Dr. Mathas added, "this might be a new therapeutic approach for Hodgkin lymphoma." The present cure rate for the disease - also in its advanced stages - is 80 to 90 percent, particular when chemotherapy is used. However, these therapy regimens might have severe side ffects including the risk of therapy-induced secondary malignancies.

Only recently Dr. Mathas and Dr. Martin Janz were distinguished for their research on Hodgkin ymphoma with the Curt Meyer Memorial Prize of the Berlin Cancer Society.

*Aberrant expression of the Th2 cytokine IL-21 in Hodgkin lymphoma cells regulates STAT3 signaling and attracts Treg cells via regulation of MIP-3 alpha

Björn Lamprecht1,2, Stephan Kreher1,2, Ioannis Anagnostopoulos4, Korinna Jöhrens4, Giovanni Monteleone3, Franziska Jundt1,2, Harald Stein4, Martin Janz1,2, Bernd Dörken1,2 and Stephan Mathas1,2

1Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin;2Hematology, Oncology and Tumorimmunology, Charité, Medical University Berlin, CVK, Augustenburger Platz 1, 13353 Berlin; 3Dipartimento di Medicina Interna e Centro di Eccellenza per lo Studio delle Malattie Complesse e Multifattoriali, Università Tor Vergata, Rome, Italy; 4Institute for Pathology, Charité, Medical University Berlin, CBF, Hindenburgdamm 30, 12200 Berlin, Germany; prepublished online August 6, 2008; DOI 10.1182/blood-2008-01-134783

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/
http://www.mdc-berlin.de/en/news/2005/index.html
http://www.lymphome.de/en/

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>