Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hodgkin Lymphoma - New Characteristics Discovered

08.10.2008
Researchers are still discovering new characteristics of Hodgkin lymphoma, a common form of cancer of the lymphatic system. The malignant cells are derived from white blood cells (B cells), but have lost a considerable part of the B cell-specific gene expression pattern.

Björn Lamprecht and Dr. Stephan Mathas (Max Delbrück Center for Molecular Medicine, MDC, Berlin-Buch and Charité - Universitätsmedizin Berlin, Germany) have now demonstrated the production of interleukin 21 (IL-21) in the tumor cells of Hodgkin lymphoma. IL-21 promotes the growth of cancer cells and helps them evade immune system detection (Blood*, Vol. 112. N0. 8, 2008, 3339-3347).

Until now IL-21 was thought to be produced only by T cells, another group of immune cells. Blocking IL-21 production could lead to the development of new therapy strategies for Hodgkin lymphoma in the future, according to the researchers in Professor Bernd Dörken's laboratory, who collaborated with researchers at the University Tor Vergata, Rome (Italy).

It was not until 1994, some 160 years after Hodgkin's lymphoma (HL) was first described by the British physician Thomas Hodgkin (1832), that - using molecular biological methods - scientists discovered that the disease originates from the white blood cells, the B cells. They noticed, however, that the malignant Hodgkin/Reed-Sternberg (HRS) cells of Hodgkin lymphoma (HL) exhibit a phenotype and characteristics that are considerably altered. Although HRS cells are derived from B cells, they have lost the expression of most of the B cell genes due to reprogramming.

The research hypothesis of the just-published paper was that the tumor cells, due to the loss of many B-cell specific genes, need alternative signaling pathways to maintain their malignant growth. As Dr. Mathas explained, "Reprogramming can provide the cells of Hodgkin ymphoma with this survival advantage." Hence, the researchers were searching for factors that normally do not originate from B cells. They found what they were looking for in the gene for the cytokine IL-21.

Different Functions of IL-21
It has only been a few years since IL-21 was discovered in T cells. The function of IL-21, however, varies greatly depending on the kind of cell. In some cell types IL-21 stimulates the body's protection program, which researchers call programmed cell death or apoptosis. Each cell contains this apoptosis program so that it will self-destruct when it is altered or defective. This prevents the defective cell from damaging the entire organism.

Thus, IL-21 stimulates the T cells of the immune system and, for instance, drives cells of the chronic-lymphatic leukemia of the B-cell type (B-CLL) to apoptosis. By contrast, in T-cell leukemias, IL-21 does just the opposite and stimulates malignant growth. For the first time, the researchers from Berlin and Rome were able to show that IL-21 is produced by lymphatic cells originally derived from B cells. IL-21 activates a specific signaling pathway (STAT3), thus up-regulating the expression of a group of specific genes in HRS cells which support the unchecked growth and survival of HRS cells.

IL-21 also activates a chemoattractant for cells which suppress the immune system

On top of that, according to further findings of the researchers, IL-21 activates a protein (MIP-3 alpha) in the HRS cells that attracts a group of T cells to the tumor which suppress the immune system. In the healthy organism, these regulatory T cells keep the immune system in check and prevent excessive immune responses.

In proximity to the HRS cells there are a large number of these regulatory T cells. Attracted by MIP-3-alpha, they can suppress an effective immune defense of the body against the HRS cells. The production of such chemoattractants could, according to the researchers, also be a cause for why Hodgkin lymphoma contains so few tumor cells. They comprise merely 0.1 to one percent of the tissue.

Animal experiments have shown that in immunological diseases like rheumatoid arthritis and lupus erythematosus, a disease accompanied by symptoms such as skin changes and inflammation of blood vessels and joints, these symptoms can be significantly improved if IL-21 is inhibited. "If we could block IL-21 or also MIP-3 alpha in human tumor cells," Dr. Mathas added, "this might be a new therapeutic approach for Hodgkin lymphoma." The present cure rate for the disease - also in its advanced stages - is 80 to 90 percent, particular when chemotherapy is used. However, these therapy regimens might have severe side ffects including the risk of therapy-induced secondary malignancies.

Only recently Dr. Mathas and Dr. Martin Janz were distinguished for their research on Hodgkin ymphoma with the Curt Meyer Memorial Prize of the Berlin Cancer Society.

*Aberrant expression of the Th2 cytokine IL-21 in Hodgkin lymphoma cells regulates STAT3 signaling and attracts Treg cells via regulation of MIP-3 alpha

Björn Lamprecht1,2, Stephan Kreher1,2, Ioannis Anagnostopoulos4, Korinna Jöhrens4, Giovanni Monteleone3, Franziska Jundt1,2, Harald Stein4, Martin Janz1,2, Bernd Dörken1,2 and Stephan Mathas1,2

1Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin;2Hematology, Oncology and Tumorimmunology, Charité, Medical University Berlin, CVK, Augustenburger Platz 1, 13353 Berlin; 3Dipartimento di Medicina Interna e Centro di Eccellenza per lo Studio delle Malattie Complesse e Multifattoriali, Università Tor Vergata, Rome, Italy; 4Institute for Pathology, Charité, Medical University Berlin, CBF, Hindenburgdamm 30, 12200 Berlin, Germany; prepublished online August 6, 2008; DOI 10.1182/blood-2008-01-134783

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/
http://www.mdc-berlin.de/en/news/2005/index.html
http://www.lymphome.de/en/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>