Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hoarding rainwater could “dramatically” expand range of dengue-fever mosquito

29.01.2009
Ecologists have developed a new model to predict the impact of climate change on the dengue fever-carrying mosquito Aedes aegypti in Australia – information that could help limit its spread.

According to the study, published in the new issue of the British Ecological Society's journal Functional Ecology, climate change and evolutionary change could act together to accelerate and expand the mosquito's range. But human behaviour – in the form of storing water to cope with climate change – is likely to have an even greater impact.

Lead author, Dr Michael Kearney of the University of Melbourne says: “The potential direct impact of climate on the distribution and abundance of Ae. aegypti is minor when compared to the potential effect of changed water-storage behaviour. In many Australian cities and towns, a major impact of climate change is reduced rainfall, resulting in a dramatic increase in domestic rainwater storage and other forms of water hoarding.”

“Water tanks and other water storage vessels such as modified wheelie bins are potential breeding sites for this disease-bearing mosquito. Without due caution with water storage hygiene, this indirect effect of climate change via human adaptation could dramatically re-expand the mosquito's current range,” he says.

Ae. aegypti probably arrived in Australia in the 19th century on ships carrying mosquito larvae-infested water barrels. During the late 19th century, Ae. aegypti was widespread in urban Australia, stretching as far south as Sydney and Perth. By the late 1960s, Ae. aegypti was restricted to the northern half of Queensland (where it currently resides) thanks in part to removal of old galvanised tin rainwater tanks, installation of piped water, insecticides and new power lawnmowers that helped people keep their back yards tidy.

The study has major implications for public health interventions in Australia and other areas of the world affected by dengue and other mosquito-spread diseases. According to Dr Scott Ritchie, a mosquito control expert and contributing author: “The better we understand the underlying processes, the better we will be able to manage disease risk into the future. Our results highlight that dengue-vectoring mosquitoes can spread to areas where they are currently not found once suitable breeding sites, such as containers, become available. Our research can help target water hygiene education campaigns to areas most at risk of dengue mosquito establishment.”

The predictions come from a new “bottom-up” model that takes into account the mosquito's biology and its physiological limitations, such as the ability of its eggs to tolerate drying out.

To construct the model, Kearney and his colleagues needed to predict the microclimates mosquitoes experience. “Like all mosquitoes, the dengue mosquito has an aquatic larval phase and it is very particular about breeding in artificial containers like water tanks, buckets and old tyres. So we developed a model of the temperature and depth of water in different containers as a function of climate. We modelled two extreme types of container – a large (3600 litre) water tank receiving rainwater from a roof catchment, and a small (20 litre) bucket only receiving rainwater from directly above. We considered each container type in high and low shade,” Kearney says.

The authors also took evolution into account – the first time this has been done in such models. According to Professor Ary Hoffmann, a coauthor of the study: “Evolution happens all the time in nature and can be very rapid, taking only a few generations to influence the fitness of populations. Our results show that evolution can make a very large difference when predicting changes in species range under climate change.”

Michael Kearney et al (2009). Integrating biophysical models and evolutionary theory to predict climatic impacts on species' ranges: the dengue mosquito Aedes aegypti in Australia, Functional Ecology, doi: 10.1111/j.1365-2435.2008.01538.x, is published online on 28 January 2009.

Melanie Thomson | Wiley-Blackwell
Further information:
http://www.britishecologicalsociety.org.
http://www.wiley.com
http://www3.interscience.wiley.com/journal/117987963/home

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>