Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hoarding rainwater could “dramatically” expand range of dengue-fever mosquito

29.01.2009
Ecologists have developed a new model to predict the impact of climate change on the dengue fever-carrying mosquito Aedes aegypti in Australia – information that could help limit its spread.

According to the study, published in the new issue of the British Ecological Society's journal Functional Ecology, climate change and evolutionary change could act together to accelerate and expand the mosquito's range. But human behaviour – in the form of storing water to cope with climate change – is likely to have an even greater impact.

Lead author, Dr Michael Kearney of the University of Melbourne says: “The potential direct impact of climate on the distribution and abundance of Ae. aegypti is minor when compared to the potential effect of changed water-storage behaviour. In many Australian cities and towns, a major impact of climate change is reduced rainfall, resulting in a dramatic increase in domestic rainwater storage and other forms of water hoarding.”

“Water tanks and other water storage vessels such as modified wheelie bins are potential breeding sites for this disease-bearing mosquito. Without due caution with water storage hygiene, this indirect effect of climate change via human adaptation could dramatically re-expand the mosquito's current range,” he says.

Ae. aegypti probably arrived in Australia in the 19th century on ships carrying mosquito larvae-infested water barrels. During the late 19th century, Ae. aegypti was widespread in urban Australia, stretching as far south as Sydney and Perth. By the late 1960s, Ae. aegypti was restricted to the northern half of Queensland (where it currently resides) thanks in part to removal of old galvanised tin rainwater tanks, installation of piped water, insecticides and new power lawnmowers that helped people keep their back yards tidy.

The study has major implications for public health interventions in Australia and other areas of the world affected by dengue and other mosquito-spread diseases. According to Dr Scott Ritchie, a mosquito control expert and contributing author: “The better we understand the underlying processes, the better we will be able to manage disease risk into the future. Our results highlight that dengue-vectoring mosquitoes can spread to areas where they are currently not found once suitable breeding sites, such as containers, become available. Our research can help target water hygiene education campaigns to areas most at risk of dengue mosquito establishment.”

The predictions come from a new “bottom-up” model that takes into account the mosquito's biology and its physiological limitations, such as the ability of its eggs to tolerate drying out.

To construct the model, Kearney and his colleagues needed to predict the microclimates mosquitoes experience. “Like all mosquitoes, the dengue mosquito has an aquatic larval phase and it is very particular about breeding in artificial containers like water tanks, buckets and old tyres. So we developed a model of the temperature and depth of water in different containers as a function of climate. We modelled two extreme types of container – a large (3600 litre) water tank receiving rainwater from a roof catchment, and a small (20 litre) bucket only receiving rainwater from directly above. We considered each container type in high and low shade,” Kearney says.

The authors also took evolution into account – the first time this has been done in such models. According to Professor Ary Hoffmann, a coauthor of the study: “Evolution happens all the time in nature and can be very rapid, taking only a few generations to influence the fitness of populations. Our results show that evolution can make a very large difference when predicting changes in species range under climate change.”

Michael Kearney et al (2009). Integrating biophysical models and evolutionary theory to predict climatic impacts on species' ranges: the dengue mosquito Aedes aegypti in Australia, Functional Ecology, doi: 10.1111/j.1365-2435.2008.01538.x, is published online on 28 January 2009.

Melanie Thomson | Wiley-Blackwell
Further information:
http://www.britishecologicalsociety.org.
http://www.wiley.com
http://www3.interscience.wiley.com/journal/117987963/home

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>