Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hoarding rainwater could “dramatically” expand range of dengue-fever mosquito

29.01.2009
Ecologists have developed a new model to predict the impact of climate change on the dengue fever-carrying mosquito Aedes aegypti in Australia – information that could help limit its spread.

According to the study, published in the new issue of the British Ecological Society's journal Functional Ecology, climate change and evolutionary change could act together to accelerate and expand the mosquito's range. But human behaviour – in the form of storing water to cope with climate change – is likely to have an even greater impact.

Lead author, Dr Michael Kearney of the University of Melbourne says: “The potential direct impact of climate on the distribution and abundance of Ae. aegypti is minor when compared to the potential effect of changed water-storage behaviour. In many Australian cities and towns, a major impact of climate change is reduced rainfall, resulting in a dramatic increase in domestic rainwater storage and other forms of water hoarding.”

“Water tanks and other water storage vessels such as modified wheelie bins are potential breeding sites for this disease-bearing mosquito. Without due caution with water storage hygiene, this indirect effect of climate change via human adaptation could dramatically re-expand the mosquito's current range,” he says.

Ae. aegypti probably arrived in Australia in the 19th century on ships carrying mosquito larvae-infested water barrels. During the late 19th century, Ae. aegypti was widespread in urban Australia, stretching as far south as Sydney and Perth. By the late 1960s, Ae. aegypti was restricted to the northern half of Queensland (where it currently resides) thanks in part to removal of old galvanised tin rainwater tanks, installation of piped water, insecticides and new power lawnmowers that helped people keep their back yards tidy.

The study has major implications for public health interventions in Australia and other areas of the world affected by dengue and other mosquito-spread diseases. According to Dr Scott Ritchie, a mosquito control expert and contributing author: “The better we understand the underlying processes, the better we will be able to manage disease risk into the future. Our results highlight that dengue-vectoring mosquitoes can spread to areas where they are currently not found once suitable breeding sites, such as containers, become available. Our research can help target water hygiene education campaigns to areas most at risk of dengue mosquito establishment.”

The predictions come from a new “bottom-up” model that takes into account the mosquito's biology and its physiological limitations, such as the ability of its eggs to tolerate drying out.

To construct the model, Kearney and his colleagues needed to predict the microclimates mosquitoes experience. “Like all mosquitoes, the dengue mosquito has an aquatic larval phase and it is very particular about breeding in artificial containers like water tanks, buckets and old tyres. So we developed a model of the temperature and depth of water in different containers as a function of climate. We modelled two extreme types of container – a large (3600 litre) water tank receiving rainwater from a roof catchment, and a small (20 litre) bucket only receiving rainwater from directly above. We considered each container type in high and low shade,” Kearney says.

The authors also took evolution into account – the first time this has been done in such models. According to Professor Ary Hoffmann, a coauthor of the study: “Evolution happens all the time in nature and can be very rapid, taking only a few generations to influence the fitness of populations. Our results show that evolution can make a very large difference when predicting changes in species range under climate change.”

Michael Kearney et al (2009). Integrating biophysical models and evolutionary theory to predict climatic impacts on species' ranges: the dengue mosquito Aedes aegypti in Australia, Functional Ecology, doi: 10.1111/j.1365-2435.2008.01538.x, is published online on 28 January 2009.

Melanie Thomson | Wiley-Blackwell
Further information:
http://www.britishecologicalsociety.org.
http://www.wiley.com
http://www3.interscience.wiley.com/journal/117987963/home

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

Pinball at the atomic level

30.03.2017 | Physics and Astronomy

Organic-inorganic heterostructures with programmable electronic properties

30.03.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>