Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HMGB1 protein triggers islet cell rejection

05.02.2010
Researchers at RIKEN and Fukuoka University have pinpointed the mechanism responsible for early rejection of transplanted pancreatic islet cells in the treatment of type 1 diabetes, also known as juvenile diabetes.

A new system based on this mechanism has been shown to vastly increase transplant efficiency, setting the stage for the development of powerful new treatment techniques.

Currently, the most widely-used treatment for type 1 diabetes is the regular injection of insulin, a burdensome task for patients. Islet cell transplantation, whereby insulin-producing cells from a donor pancreas are transplanted into the patient’s liver, is a promising alternative approach. However, it has achieved limited success due to a strong and rapid immune-mediated rejection of the transplanted islets.

With their discovery, the researchers have demonstrated that HMGB1 (high-mobility group box 1), a nuclear protein whose precise function has heretofore remained elusive, is in fact produced by the islet cells and directly triggers their early rejection. Based on this finding, they developed a system to measure the level of HMGB1 in the blood and determine the onset of rejection, information which they used to establish a treatment four times more effective than earlier islet transplantation protocols.

While shedding light on a previously-unknown function of a major nuclear protein, the discovery of the HMGB1-mediated pathway also represents a breakthrough in diabetes research. For millions of diabetes sufferers around the world, its application to islet transplantation promises great improvements in this technique, bringing dreams of insulin independence one step closer to reality.

This paper is published in the February issue of The Journal of Clinical Investigation.

For more information, please contact:

Dr. Masaru Taniguchi
Laboratory for Immune Regulation
RIKEN Research Center for Allergy and Immunology
Tel: +81-(0)45-503-7001 / Fax: +81-(0)45-503-7003
Ms. Saeko Okada (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-462-1223
Email: koho@riken.jp

Saeko Okada | Research asia research news
Further information:
http://www.riken.jp
http://www.jci.org/articles/view/41360?key=82f6533c5783a48c4c6c
http://www.researchsea.com

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>