Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HMGB1 protein triggers islet cell rejection

05.02.2010
Researchers at RIKEN and Fukuoka University have pinpointed the mechanism responsible for early rejection of transplanted pancreatic islet cells in the treatment of type 1 diabetes, also known as juvenile diabetes.

A new system based on this mechanism has been shown to vastly increase transplant efficiency, setting the stage for the development of powerful new treatment techniques.

Currently, the most widely-used treatment for type 1 diabetes is the regular injection of insulin, a burdensome task for patients. Islet cell transplantation, whereby insulin-producing cells from a donor pancreas are transplanted into the patient’s liver, is a promising alternative approach. However, it has achieved limited success due to a strong and rapid immune-mediated rejection of the transplanted islets.

With their discovery, the researchers have demonstrated that HMGB1 (high-mobility group box 1), a nuclear protein whose precise function has heretofore remained elusive, is in fact produced by the islet cells and directly triggers their early rejection. Based on this finding, they developed a system to measure the level of HMGB1 in the blood and determine the onset of rejection, information which they used to establish a treatment four times more effective than earlier islet transplantation protocols.

While shedding light on a previously-unknown function of a major nuclear protein, the discovery of the HMGB1-mediated pathway also represents a breakthrough in diabetes research. For millions of diabetes sufferers around the world, its application to islet transplantation promises great improvements in this technique, bringing dreams of insulin independence one step closer to reality.

This paper is published in the February issue of The Journal of Clinical Investigation.

For more information, please contact:

Dr. Masaru Taniguchi
Laboratory for Immune Regulation
RIKEN Research Center for Allergy and Immunology
Tel: +81-(0)45-503-7001 / Fax: +81-(0)45-503-7003
Ms. Saeko Okada (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-462-1223
Email: koho@riken.jp

Saeko Okada | Research asia research news
Further information:
http://www.riken.jp
http://www.jci.org/articles/view/41360?key=82f6533c5783a48c4c6c
http://www.researchsea.com

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>