Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The hitch in the drug? The itch in the drug

09.02.2011
Scientists discover clue to ending chronic itching side effect of certain drugs

Scratching deep beneath the surface, a team of researchers from the University of California, San Diego School of Medicine and three South Korean institutions have identified two distinct neuronal signaling pathways activated by a topical cream used to treat a variety of skin diseases. One pathway produces the therapeutic benefit; the other induces severe itching as a side effect.

The findings, published in this week's early online edition of the Proceedings of the National Academy of Sciences, point to the possibility of designing future drugs that effectively treat targeted conditions while blocking the cellular signals that can lead to problematic itching and scratching.

"This new pathway provides another avenue to block the scratching response that appears as a chronic side effect during treatments of cancer, renal failure or the use of some antibiotics," said Melvin I. Simon, PhD, an adjunct professor in the UCSD Department of Pharmacology and a corresponding co-author of the study, headed by Sang-Kyou Han, an adjunct assistant professor at UC San Diego.

Itching – and the scratching response – are part of a complex and imperfectly understood somatosensory process that includes complex, confounding psychological factors. The mechanisms involved are so sophisticated, said Simon, that just reading or thinking about itching can provoke the sensation.

Improving understanding of itch biology isn't just a matter of scratching an intellectual curiosity. It could lead to practical medical benefits, according to Simon. "Itching and scratching are side effects of a variety of therapeutic drugs and of specific illnesses. In many cases, these effects are severe and make it impossible to use otherwise effective therapies. Thus, the itch remains an unmet medical need."

In the PNAS study, the scientists focused on Imiquimod (marketed as Aldara), a prescription-based topical cream used to treat a number of skin diseases, including some forms of skin cancer, by activating the body's innate immune response. One major side effect: Imiquimod produces intense itching and scratching.

The researchers discovered that the skin sensory circuit activated by Imiquimod to causes itching is different from the signaling pathway involved in the drug's therapeutic benefit. Indeed, the Imiquimod itch mechanism is distinct from other, well-defined itch mechanisms.

"By breaking down the response and sorting out its various elements, it may be possible to both understand the molecular mechanisms involved and to control them," said Simon, who noted more research is planned.

Co-authors of the paper are Se-Jeong Kim of UCSD's Department of Pharmacology and the Department of Neuroscience, Dental Research Institute and Brain Korea21, School of Dentistry, Seoul National University; Goon Ho Park, Hyejung Min and Estelle Wall, UCSD Department of Pharmacology; Donghoon Him and Sung Joong Lee, Department of Neuroscience, Dental Research Institute and Brain Korea21, School of Dentistry, Seoul National University; Jaekwang Lee and C. Justin Lee of the Center for Functional Connectomics, Korea Institute of Science and Technology.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>