Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The hitch in the drug? The itch in the drug

09.02.2011
Scientists discover clue to ending chronic itching side effect of certain drugs

Scratching deep beneath the surface, a team of researchers from the University of California, San Diego School of Medicine and three South Korean institutions have identified two distinct neuronal signaling pathways activated by a topical cream used to treat a variety of skin diseases. One pathway produces the therapeutic benefit; the other induces severe itching as a side effect.

The findings, published in this week's early online edition of the Proceedings of the National Academy of Sciences, point to the possibility of designing future drugs that effectively treat targeted conditions while blocking the cellular signals that can lead to problematic itching and scratching.

"This new pathway provides another avenue to block the scratching response that appears as a chronic side effect during treatments of cancer, renal failure or the use of some antibiotics," said Melvin I. Simon, PhD, an adjunct professor in the UCSD Department of Pharmacology and a corresponding co-author of the study, headed by Sang-Kyou Han, an adjunct assistant professor at UC San Diego.

Itching – and the scratching response – are part of a complex and imperfectly understood somatosensory process that includes complex, confounding psychological factors. The mechanisms involved are so sophisticated, said Simon, that just reading or thinking about itching can provoke the sensation.

Improving understanding of itch biology isn't just a matter of scratching an intellectual curiosity. It could lead to practical medical benefits, according to Simon. "Itching and scratching are side effects of a variety of therapeutic drugs and of specific illnesses. In many cases, these effects are severe and make it impossible to use otherwise effective therapies. Thus, the itch remains an unmet medical need."

In the PNAS study, the scientists focused on Imiquimod (marketed as Aldara), a prescription-based topical cream used to treat a number of skin diseases, including some forms of skin cancer, by activating the body's innate immune response. One major side effect: Imiquimod produces intense itching and scratching.

The researchers discovered that the skin sensory circuit activated by Imiquimod to causes itching is different from the signaling pathway involved in the drug's therapeutic benefit. Indeed, the Imiquimod itch mechanism is distinct from other, well-defined itch mechanisms.

"By breaking down the response and sorting out its various elements, it may be possible to both understand the molecular mechanisms involved and to control them," said Simon, who noted more research is planned.

Co-authors of the paper are Se-Jeong Kim of UCSD's Department of Pharmacology and the Department of Neuroscience, Dental Research Institute and Brain Korea21, School of Dentistry, Seoul National University; Goon Ho Park, Hyejung Min and Estelle Wall, UCSD Department of Pharmacology; Donghoon Him and Sung Joong Lee, Department of Neuroscience, Dental Research Institute and Brain Korea21, School of Dentistry, Seoul National University; Jaekwang Lee and C. Justin Lee of the Center for Functional Connectomics, Korea Institute of Science and Technology.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>