Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hippocampus plays bigger memory role than previously thought

02.11.2011
Human memory has historically defied precise scientific description, its biological functions broadly but imperfectly defined in psychological terms.

In a pair of papers published in the November 2 issue of The Journal of Neuroscience, researchers at the University of California, San Diego report a new methodology that more deeply parses how and where certain types of memories are processed in the brain, and challenges earlier assumptions about the role of the hippocampus.

Specifically, Larry R. Squire, PhD, a Research Career scientist at the VA Medical Center, San Diego and professor of psychiatry, neurosciences, and psychology at UC San Diego, and Christine N. Smith, PhD, a project scientist, say that contrary to current thinking the hippocampus (a small seahorse-shaped structure located deep in the center of the brain and long associated with memory function) supports both recollection and familiarity memories when these memories are strong.

Recollection and familiarity memory are two components of recognition memory – the ability to identify an item as having been previously encountered. Recollection memory involves remembering specific details about a learning episode, such as where and when the episode occurred. Familiarity memory refers to remembering an item as previously encountered, but without any recall of specific details, such as recognizing someone's face but recalling nothing else about that person (For example, where you met the person.).

Prevailing research posits that recollection and familiarity memories involve different regions in the brain's medial temporal lobe: the hippocampus for recollection, the adjacent perirhinal cortex for familiarity.

"But given the connectivity in that part of the human brain, that separation seemed too clean, too neat," said Squire, a leading expert on the neurological bases of memory. "The idea of distinct functions was unlikely."

Recollection-based memories are typically associated with higher confidence and accuracy than familiarity-based decisions. Accordingly, in the past, comparisons between recollection and familiarity have also involved a comparison between strong memories and weak memories. So the question is how the brain accomplishes recollection and familiarity when the effect of memory strength is taken off the table.

Squire, Smith and John T. Wixted, PhD, professor of psychology and chair of the UC San Diego Department of Psychology, developed a novel method for assessing not just how recollection and familiarity memories are formed, but also their strength. The scientists combined functional magnetic resonance imaging of the brain with a test in which study participants looked at a series of words and judged on a 20-point confidence scale if each word had been studied earlier or not. If the word was deemed old (the upper half of the scale), participants were asked to decide if it was "remembered," which denotes recollection, "known," which denotes familiarity, or simply "guessed."

Not surprisingly, recollected items had a higher accuracy and confidence rating among participants than did familiar items. Previous studies have produced similar results. But when the UC San Diego scientists compared recollected and familiar items that were both strongly remembered, the data showed that the hippocampus was actively involved in both, contrary to earlier research.

The discovery peels away another layer of complexity in human memory, said Squire. "If we really want to know how the brain works, the best guide is to think of it in terms of neuroanatomy. Psychological descriptions got us started, but a fundamental map and understanding will require a deeper biological foundation."

In practical terms, Squire said, the findings may help in diagnosing and treating patients with memory problems. "If you have better constructs, you have a better way of knowing what's going on in a patient's brain. You can be more precise in your thinking about what's happening and what to do."

First-author Smith said their research may prompt other scientists to re-think some of their studies. "This was the first study to re-do earlier research with these controls. We hope it will encourage others to reassess the potential effect of strength of memory in studies of this kind."

In the second paper, Squire, with co-authors Zhuang Song, PhD, a postdoctoral researcher, and Annette Jeneson, a graduate student, used a novel combination of neuroimaging with other tests to also show that the hippocampus is related to encoding of familiarity-based item memories, not just recollection-based memories.

Funding for this research came, in part, from the Medical Research Service of the Department of Veterans Affairs, the National Institute of Mental Health and the Metropolitan Life Foundation.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>