Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hijacked supplies for pathogens

26.07.2010
Legionnaire’s disease bacteria tap into the material transport in immune cells

When it infects the lungs, the Legionnaire’s bacterium Legionella pneumophila causes acute pneumonia. The pathogen’s modus operandi is particularly ingenious: it infiltrates deliberately into cells of the human immune system and injects a host of proteins which then interfere in the normal cellular processes. Scientists from the Max Planck Institute of Molecular Physiology in Dortmund have now discovered how Legionella reprogrammes the cells to ensure its own survival and to propagate. They examined a protein used by the pathogen to divert the material transport within the cells for its own purposes. (Science, July 22, 2010)

During a Legionella infection, the bacteria are engulfed by immune cells and bound by a membrane in the cell interior. Legionella protects itself against destruction by releasing proteins that reprogramme the human cell and exploit it for its own purposes. One of these proteins is DrrA. Previous studies succeeded in demonstrating that DrrA diverts the material transport in human cells in the direction of the pathogen, using what are known as Rab proteins for this purpose.

Rab proteins are switch molecules that coordinate transport vesicles within cells. In this capacity, they ensure that these membrane-bound vesicles reach the correct destination at the right time. Of the total of 60 different Rab proteins, DrrA specifically uses the Rab1 molecule for its own purposes: it deposits Rab1 on the membrane enclosing the bacteria and activates it. As a result, part of the material transport of the human cell is diverted to the vesicle containing the bacterium.

The structural and biochemical analysis of DrrA led the Dortmund-based scientists to make an astonishing discovery: DrrA is not only capable of activating Rab1, it also appears to be able to extend its activated state. To this end, DrrA blocks the switching-off of Rab1 and the necessary recognition site for regulatory proteins by attaching an AMP molecule to Rab1. "The permanent activation of Rab1 by DrrA could ensure increased material transport in the direction of the Legionella containing compartment and hence support its survival," concludes Aymelt Itzen from the Max Planck Institute of Molecular Physiology.

"These results represent an example of how the molecular analysis of bacterial diseases can help us not only to understand the cellular mechanisms involved in an infection, but also the functioning of healthy cells," explains Roger Goody from the Dortmund Institute. In the case of Legionnaire’s disease, the study of the bacterial protein DrrA reveals how a human regulatory protein (Rab1) is activated in a targeted way and maintained in an active state. This raises the question as to whether Legionella devised this kind of regulation or whether healthy cells can also control material transport in a similar but hitherto unknown way.

Original work:

M.P. Mueller, H. Peters, J. Bluemer, W. Blankenfeldt, R.S. Goody, A. Itzen
The Legionella Effector Protein DrrA AMPylates the Membrane Traffic Regulator Rab1b

Science, July 22, 2010 / DOI: 10.1126/science.1192276

Contact:

Dr. Aymelt Itzen
Max Planck Institute of Molecular Physiology, Dortmund
Tel.: +49 231 133-2305
E-mail: aymelt.itzen@mpi-dortmund.mpg.de
Prof Roger Goody
Max Planck Institute of Molecular Physiology, Dortmund
Tel.: +49 231 133-2300
E-mail: roger.goody@mpi-dortmund.mpg.de
Dr Peter Herter, Press and Public Relations
Max Planck Institute of Molecular Physiology, Dortmund
Tel.: +49 231 133-2500
E-mail: peter.herter@mpi-dortmund.mpg.de

Barbara Abrell | EurekAlert!
Further information:
http://www.mpg.de/english/

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>