Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highly Reactive Gold Carbene Complex Shines in Emerald Green

09.07.2014

Heidelberg chemists succeed in isolating carbon-gold compound of “amazing stability”

With a chemical “trick”, scientists at Heidelberg University have succeeded in isolating a stable gold carbene complex. Chemist Prof. Dr. Bernd F. Straub and his team are the first to have created the basis for directly examining the otherwise unstable gold-carbon double bond. Prof. Straub explains that highly reactive gold carbene molecules play an important role in landmark catalysing processes taking place at high speed. The research findings have been published in the German and the international edition of „Angewandte Chemie“, a journal on applied and fundamental chemistry.


The Au=C double bond in the gold carbene compound is the bond between the large golden atom in the middle and the slightly greenish atom below. The position of the atoms was derived from an x-ray crystal structure analysis.

Copyright: Matthias Hussong and Bernd F. Straub, Heidelberg University

Chemical reactions can be accelerated with the aid of catalysts; consequently materials and pharmaceuticals can be manufactured from the raw materials of nature. The study of gold compounds in catalytic processes has proved particularly intensive and successful, according to Prof. Straub. “In numerous scientific studies in the last ten years, experts have been proposing gold carbenes as essential short-lived intermediates in catalytic reactions,” the Heidelberg researcher explains. However, with their high reactivity they escape detailed study: hardly has a gold carbene fragment consisting of the elements gold and carbon emerged – Au for aurum and C for carbon – when it continues to react.

In order to first create a stable complex and isolate a gold carbene structure for research, the two elements were “lured into a cage like a hungry tiger with a bait,” says Matthias Hussong, who is working on his doctoral dissertation in Prof. Straub’s team. The researchers first shielded the gold and carbon from its environment by surrounding them with low-reactive, space-filling chemical groups. Then the two elements were bonded in a carefully planned step – and so the Au=C fragment was “caught” in the gold carbene complex.

... more about:
»Complex »Green »carbene »materials »processes »reactions

The chemists were able to impart “an amazing stability” to the gold carbene, says Prof. Straub – and at the same time to make it literally visible. “Almost all gold complexes are colourless, while the ‘stable’ gold carbene is emerald green,” states the scientist, who heads a research group at Heidelberg University‘s Institute of Organic Chemistry. Further Heidelberg studies showed that gold in its compounds is more than a “soft proton”, as the chemical behaviour of gold had been described to date.

If the gold fragment is replaced by a “real” proton, e.g. the nucleus of hydrogen, the lightest element, this analogous protonated carbene displays a reddish purple colour. “The gold in the gold carbene complex behaves differently from a proton – that is very clear to the eye,” states Prof. Straub. He and his team are now continuing to explore the understanding of gold catalysis, with the aim of using these findings to make catalytic processes more efficient.

Original publications:
Hussong, M. W., Rominger, F., Krämer, P. und Straub, B. F.: Isolierung eines nicht-Heteroatom-stabilisierten Goldcarbens. Angew. Chem. (online veröffentlicht am 20. Juni 2014), doi: 10.1002/ange.201404032
Hussong, M. W., Rominger, F., Krämer, P. and Straub, B. F.: Isolation of a Non-Heteroatom-Stabilized Gold–Carbene Complex. Angew. Chem. Int. Ed. (published online 20 June 2014), doi: 10.1002/anie.201404032

Internet information:
http://www.uni-heidelberg.de/fakultaeten/chemgeo/oci/akstraub/index.html

 
Contact:
Prof. Dr. Bernd F. Straub
Institute of Organic Chemistry
Phone: +49 6221 54-6239
straub@oci.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Further reports about: Complex Green carbene materials processes reactions

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>