Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Highly invasive horse-chestnut leaf miner found living in the Balkans by 1879

The horse-chestnut leaf miner was living on native stands of the horse-chestnut in Greece by 1879 and was already present in the Balkans more than a century before its scientific description.

The present study by an international and interdisciplinary team around David Lees (Institut National de la Recherche Agronomique, France and Natural History Museum, London) and H. Walter Lack (Botanic Garden and Botanical Museum, Freie Universität Berlin) is based on herbarium analysis.

They resolve a two decade-long debate about origin and invasion of the horse-chestnut leaf miner. A Balkan origin for this leaf-mining moth is now certain.

Results are now published in Frontiers in Ecology and the Environment, the scientific journal of the Ecological Society of America.

Known timeline of the horse-chestnut leaf miner invasion
The small but highly invasive horse-chestnut leaf-mining moth (Cameraria ohridella) was only discovered in 1984 from an outbreak on planted trees bordering Lake Ohrid in Macedonia. It was described in 1986, as a genus new to Europe and managed to invade almost all Europe since 1989. Its larvae are leaf miners on the white flowering horse-chestnut (Aesculus hippocastanum), causing significant damage to their summer foliage. The area of origin of horse-chestnut is the Balkans (Albania, Greece, and Macedonia). Since the 17th century, the trees have been cultivated in parks, gardens and streets throughout Europe for their ornamental foliage and flowers.

Travel back in time to leaf-mining larvae in herbaria

For this study, herbarium specimens of the leaf miner’s host plant horse-chestnut from several botanical institutions throughout Europe have been examined. Surprisingly, many horse-chestnut leaf miner larvae were found which were unintentionally pressed within the leaves of horse-chestnut. The oldest caterpillar was found in a herbarium specimen collected in 1879 in Greece, over a century before the genus Cameraria was suspected to exist in Europe. By genetic analysis of the caterpillar’s mitochondrial and nuclear DNA the scientists confirmed the identity of the horse-chestnut leaf miner. They could also compare genetic diversity among present populations of the moth and historic specimens from herbaria. This study demonstrates that herbaria are greatly underutilized in studies of insect-plant interactions, herbivore biodiversity, invasive species’ origins, and for documenting past distributions. Herbaria are a relevant source of information to solve modern day problems of invasive species including pests and diseases, and for looking at temporal changes in biodiversity.

New facts about origin of horse-chestnut leaf miner

Scientists had been long debating whether the moth was a possible introduction from Southeast Asia or an example of a recent host switch from sycamore or maple trees. The present study reveals that the horse-chestnut leaf miner is even more genetically diverse in the Balkans than previously reported.

The herbarium samples uncovered previously unknown mitochondrial haplotypes and locally undocumented nuclear alleles. This surprising genetic diversity and the antiquity of the caterpillar specimens, found only on natural stands of horse-chestnut from the earliest botanical explorations of remote sites in central Greece and Albania, shows a Balkan origin for the moth, thus contradicting the introduction and host switch theories.

The study further reveals local outbreaks of the horse-chestnut leaf miner back to at least 1961, long before the species was first discovered. The team found that late development of roads in the Balkans probably accelerated the dissemination of leaf miner populations which were previously living in isolated populations in remote canyons. The leaf-mining moths are able to travel as stowaways in vehicles, increasing their mobility between natural and ornamental stands of horse-chestnut. The long time window offered by the new data from herbaria also indicates that the most invasive race of the moth, known as haplotype A, has been increasing in frequency, even within the Balkans.


Lees, D. C., Lack, H. W., Rougerie, R., Hernandez-Lopez, A., Raus, T., Avtzis, N., Augustin, S. and Lopez-Vaamonde, C. 2011. Tracking origins of invasive herbivores through herbaria and archival DNA: the case of the horse-chestnut leaf miner. Frontiers in Ecology and the Environment

doi:10.1890/100098 (available via

Press contact:

Dr David C. Lees, Unité de Recherche Zoologie Forestière, Institut National de la Recherche Agronomique, Avenue de la Pomme de Pin, 45075 Orléans, France

Tel. +33 (0)238 417 861, Email:

Prof H. Walter Lack, Botanic Garden and Botanical Museum Berlin-Dahlem, Freie Universität Berlin,
Königin-Luise-Str. 6-8, 14195 Berlin, Germany
Tel. +49 (0)30 838 50 136, E-Mail:
Press Release of:
Institut National de la Recherche Agronomique INRA, France
Botanic Garden and Botanical Museum Berlin-Dahlem / Freie Universität Berlin, Germany
Natural History Museum, London, UK
Royal Botanic Gardens, Kew, London, UK
- Full article (available via
– press pictures
– Horse-chestnut leaf miner

Gesche Hohlstein | idw
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>