Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highly flexible despite hard-wiring – even slight stimuli change information flow in the brain

26.03.2012
One cup or two faces?

What we believe to see in one of the most famous optical illusions changes in a split second; and so does the path that the information takes in the brain.


Faces or cup? Due to the rapid reorganisation of networks in the brain, we perceive different elements of the image. Image: Demian Battaglia/MPI f. Dynamics and Self-organization

In a new theoretical study, scientists of the Max Planck Institute for Dynamics and Self-Organization, the Bernstein Center Göttingen and the German Primate Center now show how this is possible without changing the cellular links of the network. The direction of information flow changes, depending on the time pattern of communication between brain areas. This reorganisation can be triggered even by a slight stimulus, such as a scent or sound, at the right time.

The way how the different regions of the brain are connected with each other plays a significant role in information processing. This processing can be changed by assembly and disassembly of neuronal connections between brain areas. But such events are much too slow to explain rapid changes in perception. From experimental studies, it was known that the responsible actions must be at least two orders of magnitude faster. The Göttingen scientists now show for the first time that it is possible to change the information flow in a tightly interconnected network in a simple manner.

Many areas of the brain display a rhythmic nerve cell activity. “The interacting brain areas are like metronomes that tick at the same speed and in a distinct temporal pattern,” says the physicist and principal investigator Demian Battaglia. The researchers were now able to demonstrate that this temporal pattern determines information flow. “If one of the metronomes is affected, e.g., through an external stimulus, then it changes beat, ticking in an altered temporal pattern compared to the others. The other areas adapt to this new situation through self-organisation, and start playing a different drum beat as well. It is therefore sufficient to impact one of the areas in the network to completely reorganize its functioning, as we have shown in our model,” explains Battaglia.

The applied perturbation does not have to be particularly strong. “It is more important that the ‘kick’ occurs at exactly the right time of the rhythm,” says Battaglia. This might play a significant role for perception processes: “When viewing a picture, we are trained to recognize faces as quickly as possible – even if there aren't any,” points out the Göttingen researcher. “But if we smell a fragrance reminiscent of wine, we immediately see the cup in the picture. This allows us to quickly adjust to things that we did not expect by changing the focus of our attention.”

Next, the scientists want to test the model on networks with a more realistic anatomy. They also hope that the findings will inspire future experimental studies, as Battaglia says: “It would be fantastic if, in some years, certain brain areas could be stimulated in such a subtle and precise manner that the theoretically predicted effects can be measured by imaging methods.”

The Bernstein Center Göttingen is part of the National Bernstein Network Computational Neuroscience (NNCN) in Germany. The NNCN was established by the German Federal Ministry of Education and Research with the aim of structurally interconnecting and developing German capacities in the new scientific discipline of computational neuroscience. The network is named after the German physiologist Julius Bernstein (1835–1917).

Original publication:
Battaglia D, Witt A, Wolf F, Geisel T (2012): Dynamic effective connectivity of inter-areal brain circuits. PLoS Comp Biol, 10.1371/journal.pcbi.1002438 http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1002438
For further information please contact:
Dr. Demian Battaglia
demian@nld.ds.mpg.de
Tel: +49 551 5176 405
Max Planck Institute for Dynamics and Self-Organization and
Bernstein Center Computational Neuroscience Göttingen
Am Faßberg 17
D-37077 Göttingen
Weitere Informationen:
http://www.bccn-goettingen.de Bernstein Center Computational Neuroscience Göttingen
http://www.ds.mpg.de Max Planck Institute for Dynamics and Self-Organization
http://www.nncn.de Bernstein Network Computational Neuroscience
http://www.mpg.de Max Planck Society
http://www.dpz.eu German Primate Center GmbH

Johannes Faber | idw
Further information:
http://www.nncn.de/

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>