Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Highly flexible despite hard-wiring – even slight stimuli change information flow in the brain

One cup or two faces?

What we believe to see in one of the most famous optical illusions changes in a split second; and so does the path that the information takes in the brain.

Faces or cup? Due to the rapid reorganisation of networks in the brain, we perceive different elements of the image. Image: Demian Battaglia/MPI f. Dynamics and Self-organization

In a new theoretical study, scientists of the Max Planck Institute for Dynamics and Self-Organization, the Bernstein Center Göttingen and the German Primate Center now show how this is possible without changing the cellular links of the network. The direction of information flow changes, depending on the time pattern of communication between brain areas. This reorganisation can be triggered even by a slight stimulus, such as a scent or sound, at the right time.

The way how the different regions of the brain are connected with each other plays a significant role in information processing. This processing can be changed by assembly and disassembly of neuronal connections between brain areas. But such events are much too slow to explain rapid changes in perception. From experimental studies, it was known that the responsible actions must be at least two orders of magnitude faster. The Göttingen scientists now show for the first time that it is possible to change the information flow in a tightly interconnected network in a simple manner.

Many areas of the brain display a rhythmic nerve cell activity. “The interacting brain areas are like metronomes that tick at the same speed and in a distinct temporal pattern,” says the physicist and principal investigator Demian Battaglia. The researchers were now able to demonstrate that this temporal pattern determines information flow. “If one of the metronomes is affected, e.g., through an external stimulus, then it changes beat, ticking in an altered temporal pattern compared to the others. The other areas adapt to this new situation through self-organisation, and start playing a different drum beat as well. It is therefore sufficient to impact one of the areas in the network to completely reorganize its functioning, as we have shown in our model,” explains Battaglia.

The applied perturbation does not have to be particularly strong. “It is more important that the ‘kick’ occurs at exactly the right time of the rhythm,” says Battaglia. This might play a significant role for perception processes: “When viewing a picture, we are trained to recognize faces as quickly as possible – even if there aren't any,” points out the Göttingen researcher. “But if we smell a fragrance reminiscent of wine, we immediately see the cup in the picture. This allows us to quickly adjust to things that we did not expect by changing the focus of our attention.”

Next, the scientists want to test the model on networks with a more realistic anatomy. They also hope that the findings will inspire future experimental studies, as Battaglia says: “It would be fantastic if, in some years, certain brain areas could be stimulated in such a subtle and precise manner that the theoretically predicted effects can be measured by imaging methods.”

The Bernstein Center Göttingen is part of the National Bernstein Network Computational Neuroscience (NNCN) in Germany. The NNCN was established by the German Federal Ministry of Education and Research with the aim of structurally interconnecting and developing German capacities in the new scientific discipline of computational neuroscience. The network is named after the German physiologist Julius Bernstein (1835–1917).

Original publication:
Battaglia D, Witt A, Wolf F, Geisel T (2012): Dynamic effective connectivity of inter-areal brain circuits. PLoS Comp Biol, 10.1371/journal.pcbi.1002438
For further information please contact:
Dr. Demian Battaglia
Tel: +49 551 5176 405
Max Planck Institute for Dynamics and Self-Organization and
Bernstein Center Computational Neuroscience Göttingen
Am Faßberg 17
D-37077 Göttingen
Weitere Informationen: Bernstein Center Computational Neuroscience Göttingen Max Planck Institute for Dynamics and Self-Organization Bernstein Network Computational Neuroscience Max Planck Society German Primate Center GmbH

Johannes Faber | idw
Further information:

More articles from Life Sciences:

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht Bioluminescent sensor causes brain cells to glow in the dark
28.10.2016 | Vanderbilt University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>