Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highly effective communities of bacteria in the world's deepest oceanic trench

18.03.2013
An international research team announces the first scientific results from one of the most inaccessible places on Earth: the bottom of the Mariana Trench located nearly 11 kilometers below sea level in the western Pacific, which makes it the deepest site on Earth.
Their analyses document that a highly active bacteria community exists in the sediment of the trench - even though the environment is under extreme pressure almost 1,100 times higher than at sea level.

In fact, the trench sediments house almost 10 times more bacteria than in the sediments of the surrounding abyssal plain at much shallower water depth of 5-6 km water.

Deep sea trenches are hot spots

Deep sea trenches act as hot spots for microbial activity because they receive an unusually high flux of organic matter, made up of dead animals, algae and other microbes, sourced from the surrounding much shallower sea-bottom. It is likely that some of this material becomes dislodged from the shallower depths during earthquakes, which are common in the area. So, even though deep sea trenches like the Mariana Trench only amount to about two percent of the World Ocean area, they have a relatively larger impact on marine carbon balance - and thus on the global carbon cycle, says Professor Ronnie Glud from Nordic Center for Earth Evolution at the University of Southern Denmark.

Ronnie Glud and researchers from Germany (HGF-MPG Research Group on Deep-Sea Ecology and Technology of the Max Planck Institute in Bremen and Alfred Wegener Institute in Bremerhaven), Japan (Japan Agency for Marine-Earth Science and Technology), Scotland (Scottish Association for Marine Science) and Denmark (University of Copenhagen), explore the deepest parts of the oceans, and the team's first results from these extreme environments are today published in the widely recognized international journal Nature Geoscience.

Diving robot

One of the team's methods was to measure the distribution of oxygen into these trench sediments as this can be related to the activity of microbes in the sediments. It is technically and logistically challenging to perform such measurements at great depths, but it is necessary in order to get accurate data on rates of bacterial activity. "If we retrieve samples from the seabed to investigate them in the laboratory, many of the microorganisms that have adapted to life at these extreme conditions will die, due to the changes in temperature and pressure. Therefore, we have developed instruments that can autonomously perform preprogrammed measuring routines directly on the seabed at the extreme pressure of the Marianas Trench", says Ronnie Glud. The research team has, together with different companies, designed the underwater robot which stands almost 4 m tall and weighs 600 kg. Among other things, the robot is equipped with ultrathin sensors that are gently inserted into the seabed to measure the distribution of oxygen at a high spatial resolution.

"We have also made videos from the bottom of the Mariana Trench, and they confirm that there are very few large animals at these depths. Rather, we find a world dominated by microbes that are adapted to function effectively at conditions highly inhospitable to most higher organisms", says Ronnie Glud.

The remaining "white spots"

The expedition of the Mariana Trench took place in 2010. Since then, the research team has sent their underwater robot to the bottom of the Japan Trench which is approximately 9 km deep, and later this year they are planning a dive in the world's second deepest trench, the 10.8 kilometers deep Kermadec-Tonga Trench near Fiji in the Pacific.

"The deep sea trenches are some of the last remaining "white spots" on the world map. We know very little about what is going on down there or which impact the deep sea trenches have on the global carbon cycle as well as climate regulation. Furthermore, we are very interested in describing and understanding the unique bacterial communities that thrive in these exceptional environments. Data from multiple deep sea trenches will allow us to find out how the general conditions are at extreme depths, but also the specific conditions for each particular trench – that may experience very different deposition regimes. This will contribute to our general understanding of Earth and its development, says Ronnie Glud.

See the article "High rate of microbial carbon turnover in sediments in the deepest oceanic trench on Earth" in Nature Geoscience.

Link: http://dx.doi.org/10.1038/NGEO1773
For more information, please contact Professor Ronnie Glud, Nordic Center for Earth Evolution at the University of Southern Denmark.

Ronnie Glud | EurekAlert!
Further information:
http://www.sdu.dk

More articles from Life Sciences:

nachricht How cells hack their own genes
24.08.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>