Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highly effective communities of bacteria in the world's deepest oceanic trench

18.03.2013
An international research team announces the first scientific results from one of the most inaccessible places on Earth: the bottom of the Mariana Trench located nearly 11 kilometers below sea level in the western Pacific, which makes it the deepest site on Earth.
Their analyses document that a highly active bacteria community exists in the sediment of the trench - even though the environment is under extreme pressure almost 1,100 times higher than at sea level.

In fact, the trench sediments house almost 10 times more bacteria than in the sediments of the surrounding abyssal plain at much shallower water depth of 5-6 km water.

Deep sea trenches are hot spots

Deep sea trenches act as hot spots for microbial activity because they receive an unusually high flux of organic matter, made up of dead animals, algae and other microbes, sourced from the surrounding much shallower sea-bottom. It is likely that some of this material becomes dislodged from the shallower depths during earthquakes, which are common in the area. So, even though deep sea trenches like the Mariana Trench only amount to about two percent of the World Ocean area, they have a relatively larger impact on marine carbon balance - and thus on the global carbon cycle, says Professor Ronnie Glud from Nordic Center for Earth Evolution at the University of Southern Denmark.

Ronnie Glud and researchers from Germany (HGF-MPG Research Group on Deep-Sea Ecology and Technology of the Max Planck Institute in Bremen and Alfred Wegener Institute in Bremerhaven), Japan (Japan Agency for Marine-Earth Science and Technology), Scotland (Scottish Association for Marine Science) and Denmark (University of Copenhagen), explore the deepest parts of the oceans, and the team's first results from these extreme environments are today published in the widely recognized international journal Nature Geoscience.

Diving robot

One of the team's methods was to measure the distribution of oxygen into these trench sediments as this can be related to the activity of microbes in the sediments. It is technically and logistically challenging to perform such measurements at great depths, but it is necessary in order to get accurate data on rates of bacterial activity. "If we retrieve samples from the seabed to investigate them in the laboratory, many of the microorganisms that have adapted to life at these extreme conditions will die, due to the changes in temperature and pressure. Therefore, we have developed instruments that can autonomously perform preprogrammed measuring routines directly on the seabed at the extreme pressure of the Marianas Trench", says Ronnie Glud. The research team has, together with different companies, designed the underwater robot which stands almost 4 m tall and weighs 600 kg. Among other things, the robot is equipped with ultrathin sensors that are gently inserted into the seabed to measure the distribution of oxygen at a high spatial resolution.

"We have also made videos from the bottom of the Mariana Trench, and they confirm that there are very few large animals at these depths. Rather, we find a world dominated by microbes that are adapted to function effectively at conditions highly inhospitable to most higher organisms", says Ronnie Glud.

The remaining "white spots"

The expedition of the Mariana Trench took place in 2010. Since then, the research team has sent their underwater robot to the bottom of the Japan Trench which is approximately 9 km deep, and later this year they are planning a dive in the world's second deepest trench, the 10.8 kilometers deep Kermadec-Tonga Trench near Fiji in the Pacific.

"The deep sea trenches are some of the last remaining "white spots" on the world map. We know very little about what is going on down there or which impact the deep sea trenches have on the global carbon cycle as well as climate regulation. Furthermore, we are very interested in describing and understanding the unique bacterial communities that thrive in these exceptional environments. Data from multiple deep sea trenches will allow us to find out how the general conditions are at extreme depths, but also the specific conditions for each particular trench – that may experience very different deposition regimes. This will contribute to our general understanding of Earth and its development, says Ronnie Glud.

See the article "High rate of microbial carbon turnover in sediments in the deepest oceanic trench on Earth" in Nature Geoscience.

Link: http://dx.doi.org/10.1038/NGEO1773
For more information, please contact Professor Ronnie Glud, Nordic Center for Earth Evolution at the University of Southern Denmark.

Ronnie Glud | EurekAlert!
Further information:
http://www.sdu.dk

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>