Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highly drug resistant, virulent strain of Pseudomonas aeruginosa arises in Ohio

12.08.2014

A team of clinician researchers has discovered a highly virulent, multidrug resistant form of the pathogen, Pseudomonas aeruginosa, in patient samples in Ohio. Their investigation suggests that the particular genetic element involved, which is still rare in the United States, has been spreading heretofore unnoticed, and that surveillance is urgently needed. The research is published ahead of print in Antimicrobial Agents and Chemotherapy.

The P. aeruginosa contained a gene for a drug resistant enzyme called a metallo beta-lactamase. Beta-lactamases enable broad-spectrum resistance to beta-lactam antibiotics, including carbapenems, cephalosporins, and penicillins, because they can break the four atom beta-lactam ring, a critical component of these antibiotics' structure.

The initial isolate of metallo-beta-lactamase-producing P. aeruginosa was identified in March, 2012, in a foot wound of a 69-year-old man with type 2 diabetes living in a long-term care facility. During 2012-2013, the investigators identified this highly antibiotic-resistant infection in six other patients. One of the seven patients subsequently died of the infection.

The cases are linked epidemiologically via admission to a community hospital and residence in long-term care facilities in Northeast Ohio. The one exception was a patient from Qatar who was transferred into a tertiary medical center in Ohio, says lead author Federico Perez, of the Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA.

The investigators subsequently found that the metallo beta-lactamase was contained within an integron, a genetic element that can jump from one species of bacterium to another, can reside on plasmids or within the chromosomes, and is known for being able to contain multiple antibiotic resistance genes.

This particular metallo beta-lactamase, verona integron-encoded metallo beta-lactamse (VIM), is widespread globally, if not in the US. "VIM enzymes confer resistance to imipenem and all other beta-lactams," says Perez. "They are not inhibited by metallo beta-lactamase inhibitors."

"Alarmingly, the [extensively drug-resistant] phenotype expressed by some of these isolates precluded any reliable antibiotic treatment since they even displayed intermediate resistance to colistin, an 'agent of last resort'," the researchers write. "Patients who were affected had multiple comorbidities, endured prolonged colonization, required long-term care and, in one instance had a lethal outcome from a bloodstream infection."

On top of everything else, genomic sequencing and assembly showed that the integron was part of a novel 35 kilobase region that included a transposon (another mobile genetic element) and the so-called Salmonella Genomic Island 2 (SGI2). That indicated that a recombination event had occurred between Salmonella and P. aeruginosa, contributing even more resistance genes to the latter.

"This is the first description of genetic exchange of a large mobile element—the Salmonella Genome Island—and resistance genes between P. aerugenosa and Salmonella, says Perez. "This movement of genetic material creates concern that metallo beta-lactamases will disseminate rapidly in these enteric pathogens that are also very invasive. We are also concerned about the possibility of enhanced virulence."

###

The manuscript can be found online at http://bit.ly/asmtip0814a. The final version of the article is scheduled for the October 2014 issue of Antimicrobial Agents and Chemotherapy.

Antimicrobial Agents and Chemotherapy is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | Eurek Alert!
Further information:
http://www.asm.org/

Further reports about: Chemotherapy Pseudomonas Salmonella aeruginosa antibiotic resistance virulent

More articles from Life Sciences:

nachricht How Invasive Plants Influence an Ecosystem
28.07.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Perseus translates proteomics data
27.07.2016 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

World first demo of labyrinth magnetic-domain-optical Q-switched laser

28.07.2016 | Information Technology

New material could advance superconductivity

28.07.2016 | Materials Sciences

CO2 can be stored underground for 10 times the length needed to avoid climatic impact

28.07.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>