Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highly contagious honey bee virus transmitted by mites

08.06.2012
Researchers in Hawaii and the UK report that the parasitic 'Varroa' mite has caused the Deformed Wing Virus (DWV) to proliferate in honey bee colonies.
This association is now thought to contribute to the world-wide spread and probable death of millions of honey bee colonies. The current monetary value of honey bees as commercial pollinators in the United States alone is estimated at about $15-$20 billion annually

The research conducted in Hawaii by researchers at Sheffield University, the Marine Biological Association, FERA and University of Hawaii, and reported in the journal Science (8 June 2012), showed how Varroa caused DWV – a known viral pathogen – to increase its frequency among honey bee colonies from 10% to 100%.

This change was accompanied by a million-fold increase in the number of virus particles infecting each honey bee and a massive reduction in viral strain diversity leading to the emergence of a single 'virulent' DWV strain.

As the mite and new virulent strain of virus becomes established across the Hawaiian islands the new emerging viral landscape will mirror that found across the rest of the world where Varroa is now established.

This ability of a mite to permanently alter the honey bee viral landscape may by a key factor in the recent colony collapse disorder (CCD) and over-wintering colony losses (OCL) as the virulent pathogen strain remains even after the mites are removed.

Notes for editors

Honey bee populations can experience spectacular crashes. The most recent being the well publicized colony collapse disorder (CCD), but its cause remains a mystery.

Varroa is a large mite (~1.5mm x1mm) that lives on the surface of honeybees, feeding off their blood and reproducing on their developing brood.

The arrival and spread of Varroa across the Hawaiian Islands offered a unique opportunity during 2009 and 2010 to track the evolutionary change in the honey bee virus landscape.

The mite facilitates the spread of viruses by acting as a viral reservoir and incubator, although four bee viruses often associated with CCD (Kashmir bee, Slow paralysis, Acute bee paralysis and Israeli acute paralysis virus) were not influenced by Varroa in Hawaii.

One bee virus, the Deformed Wing Virus (DWV), has been implicated in colony losses, for example over wintering colony losses (OCL), as it appears to become ubiquitous wherever Varroa occurs.

DWV is naturally transmitted between bees via feeding or during mating. However, the mites introduce DWV directly into the bee's blood while feeding so creating a new viral transmission route that bypasses many of the bees' natural defensive barriers.

DWV is a tiny virus similar in structure to polio or foot and mouth virus and has only 9 genes.

DWV infected bees may display the classic wing deformity, but the vast majority of infected bees do not show any morphological signs of infection.

The dominant strain found on Oahu and now Big Island is identical to that found in other areas of the world indicating that the situation on Hawaii is a mirror to what has happened right across the globe.

Based on comparisons between the 2009 and 2010 the changes in viral diversity associated with Varroa appear stable and persist even after the parasite levels are reduced via mite treatments.

Dr Stephen J Martin | EurekAlert!
Further information:
http://www.sheffield.ac.uk

Further reports about: CCD DWV Hawaiian OCL Virus WING bee colonies honey bee honey bee colonies

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>