Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highly contagious honey bee virus transmitted by mites

08.06.2012
Researchers in Hawaii and the UK report that the parasitic 'Varroa' mite has caused the Deformed Wing Virus (DWV) to proliferate in honey bee colonies.
This association is now thought to contribute to the world-wide spread and probable death of millions of honey bee colonies. The current monetary value of honey bees as commercial pollinators in the United States alone is estimated at about $15-$20 billion annually

The research conducted in Hawaii by researchers at Sheffield University, the Marine Biological Association, FERA and University of Hawaii, and reported in the journal Science (8 June 2012), showed how Varroa caused DWV – a known viral pathogen – to increase its frequency among honey bee colonies from 10% to 100%.

This change was accompanied by a million-fold increase in the number of virus particles infecting each honey bee and a massive reduction in viral strain diversity leading to the emergence of a single 'virulent' DWV strain.

As the mite and new virulent strain of virus becomes established across the Hawaiian islands the new emerging viral landscape will mirror that found across the rest of the world where Varroa is now established.

This ability of a mite to permanently alter the honey bee viral landscape may by a key factor in the recent colony collapse disorder (CCD) and over-wintering colony losses (OCL) as the virulent pathogen strain remains even after the mites are removed.

Notes for editors

Honey bee populations can experience spectacular crashes. The most recent being the well publicized colony collapse disorder (CCD), but its cause remains a mystery.

Varroa is a large mite (~1.5mm x1mm) that lives on the surface of honeybees, feeding off their blood and reproducing on their developing brood.

The arrival and spread of Varroa across the Hawaiian Islands offered a unique opportunity during 2009 and 2010 to track the evolutionary change in the honey bee virus landscape.

The mite facilitates the spread of viruses by acting as a viral reservoir and incubator, although four bee viruses often associated with CCD (Kashmir bee, Slow paralysis, Acute bee paralysis and Israeli acute paralysis virus) were not influenced by Varroa in Hawaii.

One bee virus, the Deformed Wing Virus (DWV), has been implicated in colony losses, for example over wintering colony losses (OCL), as it appears to become ubiquitous wherever Varroa occurs.

DWV is naturally transmitted between bees via feeding or during mating. However, the mites introduce DWV directly into the bee's blood while feeding so creating a new viral transmission route that bypasses many of the bees' natural defensive barriers.

DWV is a tiny virus similar in structure to polio or foot and mouth virus and has only 9 genes.

DWV infected bees may display the classic wing deformity, but the vast majority of infected bees do not show any morphological signs of infection.

The dominant strain found on Oahu and now Big Island is identical to that found in other areas of the world indicating that the situation on Hawaii is a mirror to what has happened right across the globe.

Based on comparisons between the 2009 and 2010 the changes in viral diversity associated with Varroa appear stable and persist even after the parasite levels are reduced via mite treatments.

Dr Stephen J Martin | EurekAlert!
Further information:
http://www.sheffield.ac.uk

Further reports about: CCD DWV Hawaiian OCL Virus WING bee colonies honey bee honey bee colonies

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>