Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How did higher life originate?

04.06.2010
Scientists have for the first time decoded the complete genome of a brown alga and opened a new door to the understanding of multicellularity and photosynthesis.

With the world's first complete sequencing of a brown algal genome, an international research team has made a big leap towards understanding the evolution of two key prerequisites for higher life on Earth - multicellularity and photosynthesis.

As the internationally renowned specialist magazine "Nature" reported in its latest issue, about 100 scientists and technicians, during a five-year research project, successfully decoded all hereditary information – commonly known as the "genome" - on Ectocarpus siliculosus, an up to 20 cm large brown seaweed, which occurs mainly along coastlines in temperate latitudes. They have analyzed approximately 214 million base pairs and assigned these to about 16,000 genes. The biologists, Dr. Klaus Valentin and Dr. Bank Beszteri of the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association have been involved in this global project since the planning phase in 2005.

“As evolutionary scientists we are particularly interested in why the world has developed as we know it today,” said Klaus Valentin about this project. “During earth’s history, complex multicellular life has evolved from unicellular organisms along five independent paths, which are: animals, plants, fungi, red algae and brown algae.” Evolutionary scientists have therefore set themselves the goal to decode a complete genome from a representative of each of these lines and to look for comparable genetic information. “This goal has now been achieved for the brown algal genome. The decoding of a red algal genome has already been completed, and we are currently evaluating the data,” says Valentin on the future prospects of comparative genomics. “And indeed, in the brown alga, we found many genes for so called kinases, transporter and transcription factors. Such genes are also commonly found in land plants, and we suspect that they also play a key role in the origin of multicellular organisms.”

The sequencing of the brown algal genome is also a milestone in the efforts to reconstruct the evolution of photosynthesis. “We now know that oxygen-producing photosynthesis was „invented“ before about 3.8 billion years ago, by cyanobacteria, sometimes erroneously called ’blue-green algae’,“ says Valentin about the elemental capability of plants to convert sunlight into biologically usable energy, whilst releasing oxygen. “Green and red algae have developed this ability after their ancestors scavenged living cyanobacteria, and thus more or less captured photosynthesis, to the benefit of both sides, since this symbiosis resulted in tremendous competitive advantages in the primordial ocean.”

Brown algae were assumed to have arisen from the fusion of photosynthetically inactive colourless cells with a unicellular red alga. However, as discovered in a previous research project on single-celled diatoms (Press release from 26.06.2009), AWI researchers proved that brown algae also arise from the fusion of a green alga with a red alga and thus refuted a widespread theory among experts. “Interestingly,” says Klaus Valentin, “In the brown alga we discovered, a high proportion of genes that are characteristic of green algae, including the kinases and transporters typical for multicellular land plants, as mentioned above. To which extent we have traced common origins of multicellular life, will have to be determined in future investigations”.

From an ecological point of view, however, brown algae are also an exciting study object. On the rocky shores of polar and temperate latitudes, their role in the ecosystem is similar to that of trees on the mainland. Some species can reach lengths of up to 160 meters. These “submarine forests” are not only an important habitat for marine animals, but in areas with strong tides, they often fall dry for several hours and reveal an incredible stress tolerance. “In the context of climate change, we have now become interested in how brown algae have adapted to UV light and increasing temperatures. How they adjust to changing living conditions,” mentions Klaus Valentin, is one of the aspects of research on ocean forests at the Alfred Wegener Institute. “In addition, brown algae are geologically speaking much older than terrestrial plants. They have multiple metabolic properties, but these have barely been studied. A better understanding of the properties locked up in the genes could also be a foundation for the development of new products and technologies”.

Notes for Editors:

Your contact person at the Alfred Wegener Institute is Dr Klaus Valentin (Phone: +49 (0) 173 3241067, e-mail: Klaus.Valentin@awi.de). Your contact in the Department of Communications and Media Relations is Ralf Roechert (Phone: +49 (0) 471 4831-1680, e-mail: medien@awi.de).

This press release relates to the article „The Ectocarpus genome and the independent evolution of multicellularity in brown algae“ to be published in the journal “Nature” on 3rd June 2010.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and oceans of the high and mid latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctic. The Alfred Wegener Institute is one of the sixteen research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Margarete Pauls | idw
Further information:
http://www.awi.de

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>