Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


High-speed evolution in the lab – Geneticists evaluate cost-effective genome analysis


Life implies change. And this holds true for genes as well. Organisms require a flexible genome in order to adapt to changes in the local environment.

Christian Schlötterer and his team from the Institute for Population Genetics at the University of Veterinary Medicine, Vienna study the genomes of entire populations. The scientists want to know why individuals differ from each other and how these differences are encoded in the DNA.

Christian Schlötterer and his colleagues are searching for variation in the genomes of fruitflies.

Photo: Michael Bernkopf / Vetmeduni Vienna

In two review papers published in the journals Nature Reviews Genetics and Heredity, they discuss why DNA sequencing of entire groups can be an efficient and cost-effective way to answer these questions.

DNA analysis has become increasingly efficient and cost-effective since the human genome was first fully sequenced in the year 2001. Sequencing a complete genome, however, still costs around US$1,000. Sequencing the genetic code of hundreds of individuals would therefore be very expensive and time-consuming. In particular for non-human studies, researchers very quickly hit the limit of financial feasibility.

Sequencing groups instead of individuals

The solution to this problem is pool sequencing (Pool-Seq). Schlötterer and his team sequence entire groups of fruit flies (Drosophila melanogaster) at once instead of carrying out many individual sequencing reactions. While the resulting genetic information cannot be attributed to a single individual, the complete data set still provides important genetic information about the entire population.

In the two publications, Schlötterer and colleagues discuss the breadth of questions that can be addressed by Pool-Seq.

Searching for the building blocks of evolution

In order to understand how organisms react to changes in the local environment, the genomes of entire populations can be analysed using Pool-Seq, before and after changed conditions. To do so, the researchers use the method of evolve and resequence (E&R). Schlötterer received an ERC Advanced Grant for this approach in 2012. E&R is a method in which the DNA of a group of individuals is sequenced. After exposing the descendents of this group for several generations to a certain stress, such as high temperature, extreme cold or UV radiation, and the evolved group is then sequenced again. A comparison of the two data sets uncovers genes that have changed in response to the selective stress. The approach makes it possible, for example, to filter out the genes that are involved in a darker pigmentation in response to UV radiation.
“Using this principle, we can perform evolution experiments at high speed. We are using this method to address a broad range of questions, ranging from the identification of genes which influence aging, or genes protecting against diseases and finally to understand the genetic changes which reduce the impact of climate change,” Schlötterer explains.

Uncovering the genetics of aging and disease resistance

The evolve-and-resequence approach also makes it also possible to filter out the genes that regulate aging. This process involves selecting flies from a population, repeatedly over generations, that reach an especially old age. Several generations later, the researchers then compare the genomes of the “Methuselah” flies with those from normally aging flies in order to extract the genes that are involved in the aging process. This method also works to locate genes that provide resistance against certain diseases.

Bioinformatician and co-author, Robert Kofler, explains: “We are dealing with genetic change processes and are searching for variations in the genomes. The variations can help us to understand how evolution works.”

Population geneticists trained in Vienna

Schlötterer heads the “Vienna Graduate School of Population Genetics” hosted by the University of Veterinary Medicine, Vienna. The doctoral program fills the gap between theoretical and experimental population genetics. 22 PhD students are currently conducting research in Vienna in the field of theoretical and experimental population genetics, bioinformatics, and statistics.

The article „Sequencing pools of individuals – mining genome-wide polymorphism data without big funding” by Christian Schlötterer, Taymond Tobler, Robert Kofler and Viola Nolte was published in the journal Nature Reviews Genetics. DOI:10.1038/nrg3803

The article “Combining experimental evolution with next-generation sequencing: a powerful tool to study adaptation from standing genetic variation” by Christian Schlötterer, Robert Kofler, E. Versace, Raymond Tobler and S. U. Franssen was published in the journal Heredity. DOI:HDY.2014.86

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms.

Scientific Contact:
Prof. Christian Schlötterer
Institute of Population Genetics
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-4300

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153

Weitere Informationen:

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>