Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High salt levels in food banished by seaweed

19.09.2008
High salt levels in processed food could be a thing of the past, thanks to new research which has found that a certain type of seaweed can be used as a natural, health boosting alternative that doesn't affect the taste or adversely affect the shelf life of the food.

In a project that could revolutionise the food industry and improve the health of millions, researchers at Sheffield Hallam University have been working with Seagreens® to develop the use of seaweed granules as an alternative to salt (sodium chloride) in processed food.

Around 75 per cent of our daily salt intake comes from processed foods, with the average adult consuming 50 per cent more salt than the recommended limit of six grams per day.

Too much salt can lead to high blood pressure, which triples a person's chances of suffering a heart attack or stroke. Experts predict that if all adults cut their salt intake down to recommended levels then 70,000 heart attacks and strokes would be prevented each year in the UK.

As well as cutting salt, seaweed also has other reputed benefits and has been credited for playing a beneficial role in a number of common health conditions, such as obesity, diabetes, thyroid problems, breast cancer and cardiovascular disease. Nutritionally, Seagreens® granules contain an ideal balance of all the mineral salts including sodium at around 3.5 per cent, instead of 40 per cent typically found in salt.

Dr. Andrew Fairclough, lead researcher on the project from Sheffield Hallam University's Food Innovation team explains, "Seagreens® came to us with a proposal for using their wild Arctic wrack seaweed granules as an alternative to salt, but wanted to find out more about how this would affect foods, in particular their shelf life. Our research has found that as well as maintaining the taste of the food, the seaweed granules reduce the numbers of certain micro-organisms thereby helping to, lengthen its shelf life in a similar way to salt.

"In addition to this, Sheffield Hallam University tested the granules for their 'purity' in terms of their microbial load and for any external pollutants, and found that the product is extremely 'clean'."

"When you also factor in the other health benefits of seaweed this has the potential to have a massive effect on the food industry, and to impact on the health of millions."

Simon Ranger, Chief Executive of Seagreens® explains, "'Seaweed has already been shown to offer significant benefits in connection with cardiovascular health, where common salt in the form of sodium chloride is contra-indicated. It has now been clearly demonstrated that it not only matches salt in terms of food flavouring and its comprehensive nutrient profile, but that it can also effectively extend the shelf life of food, makes it a real winner for improving the taste and quality of our food on a much wider basis in future."

The research was part of Sheffield Hallam University's Food Innovation Project, which was initially funded through a £1.3 million Higher Education Funding Council for England initiative and continues to run as part of the University's work with companies and organisations. Its aim is to help companies respond to the business growth opportunities created by the healthy eating agenda.

Lorna Branton | alfa
Further information:
http://www.shu.ac.uk

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>