Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High salt levels in food banished by seaweed

19.09.2008
High salt levels in processed food could be a thing of the past, thanks to new research which has found that a certain type of seaweed can be used as a natural, health boosting alternative that doesn't affect the taste or adversely affect the shelf life of the food.

In a project that could revolutionise the food industry and improve the health of millions, researchers at Sheffield Hallam University have been working with Seagreens® to develop the use of seaweed granules as an alternative to salt (sodium chloride) in processed food.

Around 75 per cent of our daily salt intake comes from processed foods, with the average adult consuming 50 per cent more salt than the recommended limit of six grams per day.

Too much salt can lead to high blood pressure, which triples a person's chances of suffering a heart attack or stroke. Experts predict that if all adults cut their salt intake down to recommended levels then 70,000 heart attacks and strokes would be prevented each year in the UK.

As well as cutting salt, seaweed also has other reputed benefits and has been credited for playing a beneficial role in a number of common health conditions, such as obesity, diabetes, thyroid problems, breast cancer and cardiovascular disease. Nutritionally, Seagreens® granules contain an ideal balance of all the mineral salts including sodium at around 3.5 per cent, instead of 40 per cent typically found in salt.

Dr. Andrew Fairclough, lead researcher on the project from Sheffield Hallam University's Food Innovation team explains, "Seagreens® came to us with a proposal for using their wild Arctic wrack seaweed granules as an alternative to salt, but wanted to find out more about how this would affect foods, in particular their shelf life. Our research has found that as well as maintaining the taste of the food, the seaweed granules reduce the numbers of certain micro-organisms thereby helping to, lengthen its shelf life in a similar way to salt.

"In addition to this, Sheffield Hallam University tested the granules for their 'purity' in terms of their microbial load and for any external pollutants, and found that the product is extremely 'clean'."

"When you also factor in the other health benefits of seaweed this has the potential to have a massive effect on the food industry, and to impact on the health of millions."

Simon Ranger, Chief Executive of Seagreens® explains, "'Seaweed has already been shown to offer significant benefits in connection with cardiovascular health, where common salt in the form of sodium chloride is contra-indicated. It has now been clearly demonstrated that it not only matches salt in terms of food flavouring and its comprehensive nutrient profile, but that it can also effectively extend the shelf life of food, makes it a real winner for improving the taste and quality of our food on a much wider basis in future."

The research was part of Sheffield Hallam University's Food Innovation Project, which was initially funded through a £1.3 million Higher Education Funding Council for England initiative and continues to run as part of the University's work with companies and organisations. Its aim is to help companies respond to the business growth opportunities created by the healthy eating agenda.

Lorna Branton | alfa
Further information:
http://www.shu.ac.uk

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>