Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-resolution mapping technique uncovers underlying circuit architecture of the brain

28.06.2013
Joint Salk-Gladstone study to help scientists decode circuitry that guides brain function

The power of the brain lies in its trillions of intercellular connections, called synapses that together form complex neural "networks." While neuroscientists have long sought to map these individual connections to see how they influence specific brain functions, traditional techniques have been unsuccessful.


The microscope image shows nerve cells in the mouse brain that have been labeled with a modified rabies virus. These cells send direct connections to striatum, a region of the brain that regulates voluntary movement. The striatum is disrupted in degenerative disorders such as Parkinson's disease and Huntington's disease.

Credit: Courtesy of Nicholas Wall, Salk Institute for Biological Studies

Now, scientists at the Salk Institute and the Gladstone Institutes, using an innovative brain- tracing technique, have found a way to untangle these networks. These findings offer new insight into how specific brain regions connect to each other, while also revealing clues as to what may happen, neuron by neuron, when these connections are disrupted.

In the latest issue of Neuron, a team led by Edward Callaway, a Salk professor and holder of the Audrey Geisel Chair in Biomedical Science, and Anatol Kreitzer, a Gladstone investigator, combined mouse models with a sophisticated tracing technique---- known as the monosynaptic rabies virus system---- to assemble brain-wide maps of neurons that connect with the basal ganglia, a region of the brain that is involved in movement and decision-making. Developing a detailed anatomical understanding of this region is important as it could inform research into disorders that can be traced to basal ganglia dysfunction, including both Parkinson's disease and Huntington's disease.

"The monosynaptic rabies virus approach---- pioneered by Dr. Callaway---- is ingenious in the exquisite precision that it offers compared with previous methods, which were messier with a much lower resolution," explained Kreitzer, who is also an assistant professor of neurology and physiology at the University of California, San Francisco, with which Gladstone is affiliated. "In this paper, we took the approach one step further by activating the tracer genetically, which ensures that it is only turned on in specific neurons in the basal ganglia. This is a huge leap forward technologically, as we can be sure that we're following only the networks that connect to particular kinds of cells in the basal ganglia from other parts of the brain."

At Gladstone, Kreitzer focuses his research on the basal ganglia as it relates to Parkinson's. Last year, he and his team published research that revealed clues to the relationship between two types of neurons found in the region-and how they guide both movement and decision-making. These two types, called direct-pathway medium spiny neurons (dMSNs) and indirect-pathway medium spiny neurons (iMSNs), act as opposing forces. dMSNs initiate movement, like the gas pedal, and iMSNs inhibit movement, like the brake. The latest research from the Kreitzer lab further found that these two types are also involved in behavior, specifically decision-making, and that dysfunctions in dMSNs and iMSNs are associated with addictive and depressive behaviors, respectively. These findings were important because they provided a link between the physical neuronal degeneration seen in movement disorders, such as Parkinson's, and some of the disease's behavioral aspects. But this study still left many questions unanswered.

"For example, while that study and others like it revealed the roles of dMSNs and iMSNs in movement and behavior, we knew very little about how other brain regions influenced the function of these two neuron types," said Nicholas Wall, a Salk Institute postdoctoral fellow and the paper's first author. "The monosynaptic rabies virus system helps us address that question."

The system, originally developed in 2007 and refined by Wall and Callaway for targeting specific cell types in 2010, uses a modified version of the rabies virus to "infect" a brain region, which in turn targets neurons that are connected to it. When the system was applied in genetic mouse models, the team could see specifically how sensory, motor, and reward structures in the brain connected to MSNs in the basal ganglia. What they found was surprising.

"We noticed that some regions showed a preference for transmitting to dMSNs vs. iMSNs, and vice versa," said Kreitzer. "For example, neurons residing in the brain's motor cortex tended to favor iMSNs, while neurons in the sensory and limbic systems preferred dMSNs. This fine-scale organization, which would have been virtually impossible to observe using traditional techniques, allows us to predict the distinct roles of these two neuronal types."

"These initial results should be treated as a resource not only for decoding how this network guides the vast array of very distinct brain functions, but also how dysfunctions in different parts of this network can lead to different neurological conditions," said Callaway. "If we can use the rabies virus system to pinpoint distinct network disruptions in distinct types of disease, we could significantly improve our understanding of these disease's underlying molecular mechanisms-and get even closer to developing solutions for them."

This research was supported by the Gatsby Charitable Foundation and the National Institutes of Health.

Kat Kearney | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>