Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-resolution mapping technique uncovers underlying circuit architecture of the brain

28.06.2013
Joint Salk-Gladstone study to help scientists decode circuitry that guides brain function

The power of the brain lies in its trillions of intercellular connections, called synapses that together form complex neural "networks." While neuroscientists have long sought to map these individual connections to see how they influence specific brain functions, traditional techniques have been unsuccessful.


The microscope image shows nerve cells in the mouse brain that have been labeled with a modified rabies virus. These cells send direct connections to striatum, a region of the brain that regulates voluntary movement. The striatum is disrupted in degenerative disorders such as Parkinson's disease and Huntington's disease.

Credit: Courtesy of Nicholas Wall, Salk Institute for Biological Studies

Now, scientists at the Salk Institute and the Gladstone Institutes, using an innovative brain- tracing technique, have found a way to untangle these networks. These findings offer new insight into how specific brain regions connect to each other, while also revealing clues as to what may happen, neuron by neuron, when these connections are disrupted.

In the latest issue of Neuron, a team led by Edward Callaway, a Salk professor and holder of the Audrey Geisel Chair in Biomedical Science, and Anatol Kreitzer, a Gladstone investigator, combined mouse models with a sophisticated tracing technique---- known as the monosynaptic rabies virus system---- to assemble brain-wide maps of neurons that connect with the basal ganglia, a region of the brain that is involved in movement and decision-making. Developing a detailed anatomical understanding of this region is important as it could inform research into disorders that can be traced to basal ganglia dysfunction, including both Parkinson's disease and Huntington's disease.

"The monosynaptic rabies virus approach---- pioneered by Dr. Callaway---- is ingenious in the exquisite precision that it offers compared with previous methods, which were messier with a much lower resolution," explained Kreitzer, who is also an assistant professor of neurology and physiology at the University of California, San Francisco, with which Gladstone is affiliated. "In this paper, we took the approach one step further by activating the tracer genetically, which ensures that it is only turned on in specific neurons in the basal ganglia. This is a huge leap forward technologically, as we can be sure that we're following only the networks that connect to particular kinds of cells in the basal ganglia from other parts of the brain."

At Gladstone, Kreitzer focuses his research on the basal ganglia as it relates to Parkinson's. Last year, he and his team published research that revealed clues to the relationship between two types of neurons found in the region-and how they guide both movement and decision-making. These two types, called direct-pathway medium spiny neurons (dMSNs) and indirect-pathway medium spiny neurons (iMSNs), act as opposing forces. dMSNs initiate movement, like the gas pedal, and iMSNs inhibit movement, like the brake. The latest research from the Kreitzer lab further found that these two types are also involved in behavior, specifically decision-making, and that dysfunctions in dMSNs and iMSNs are associated with addictive and depressive behaviors, respectively. These findings were important because they provided a link between the physical neuronal degeneration seen in movement disorders, such as Parkinson's, and some of the disease's behavioral aspects. But this study still left many questions unanswered.

"For example, while that study and others like it revealed the roles of dMSNs and iMSNs in movement and behavior, we knew very little about how other brain regions influenced the function of these two neuron types," said Nicholas Wall, a Salk Institute postdoctoral fellow and the paper's first author. "The monosynaptic rabies virus system helps us address that question."

The system, originally developed in 2007 and refined by Wall and Callaway for targeting specific cell types in 2010, uses a modified version of the rabies virus to "infect" a brain region, which in turn targets neurons that are connected to it. When the system was applied in genetic mouse models, the team could see specifically how sensory, motor, and reward structures in the brain connected to MSNs in the basal ganglia. What they found was surprising.

"We noticed that some regions showed a preference for transmitting to dMSNs vs. iMSNs, and vice versa," said Kreitzer. "For example, neurons residing in the brain's motor cortex tended to favor iMSNs, while neurons in the sensory and limbic systems preferred dMSNs. This fine-scale organization, which would have been virtually impossible to observe using traditional techniques, allows us to predict the distinct roles of these two neuronal types."

"These initial results should be treated as a resource not only for decoding how this network guides the vast array of very distinct brain functions, but also how dysfunctions in different parts of this network can lead to different neurological conditions," said Callaway. "If we can use the rabies virus system to pinpoint distinct network disruptions in distinct types of disease, we could significantly improve our understanding of these disease's underlying molecular mechanisms-and get even closer to developing solutions for them."

This research was supported by the Gatsby Charitable Foundation and the National Institutes of Health.

Kat Kearney | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>