Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-performance microscope displays pores in the cell nucleus with greater precision

26.06.2015

The transportation of certain molecules into and out of the cell nucleus takes place via nuclear pores. For some time, detailed research has been conducted into how these pores embedded in the nuclear envelope are structured. Now, for the first time, biochemists from the University of Zurich have succeeded in elucidating the structure of the transportation channel inside the nuclear pores in high resolution using high-performance electron microscopes.

An active exchange takes place between the cell nucleus and the cytoplasm: Molecules are transported into the nucleus or from the nucleus into the cytoplasm. In a human cell, more than a million molecules are transported into the cell nucleus every minute.


The nuclear pore complex is comprised of several layered rings: the cytoplasmic ring (gold), the spoke ring within the pore (blue) and the nucleoplasmic ring (green).

UZH

In the process, special pores embedded in the nucleus membrane act as transport gates. These nuclear pores are among the largest and most complex structures in the cell and comprise more than 200 individual proteins, which are arranged in a ring-like architecture.

They contain a transportation channel, through which small molecules can pass unobstructed, while large molecules have to meet certain criteria to be transported. Now, for the first time, an UZH research team headed by Professor Ohad Medalia has succeeded in displaying the spatial structure of the transport channel in the nuclear pores in high resolution.

“Molecular gate” discovered in the pore channel

For their study, the scientists used shock-frozen specimens of clawed frog oocytes. With the aid of cryo-electron microscopes, Medalia’s team was able to display the miniscule nuclear pores, which were merely a ten thousandth of a millimeter in diameter, at a considerably higher resolution than ever before. As a result, they uncovered new details:

“We discovered a previously unobserved structure inside the nuclear pore that forms a kind of molecular gate, which can only be opened by molecules that hold the right key,” explains Medalia. This “molecular gate” is the so-called spoke ring, which is sandwiched between two other rings and extends inside the nuclear pores. The gate itself consists of a fine lattice, which enables small molecules to slip through unobstructed.

The new, high-resolution presentation of the nuclear pore structure leads to a better understanding of why certain molecules are allowed to pass through the nuclear pores while others are turned away. It also helps improve our understanding of the development of some diseases that involve a defective transportation to the nuclear pores – such as intestinal, ovarian and thyroid cancer.


Literature:

M. Eibauer, M. Pellanda, Y. Turgay, A. Dubrovsky, A. Wild, and O. Medalia: Structure and Gating of the Nuclear Pore Complex. Nature Communications. June xx, 2015. doi: 10.1038/ncomms8532


Cryo-electron microscopy at the University of Zurich

Cryo-electron tomography is a method to render cell structures three-dimensionally visible in their natural environment in high resolution using both electron microscopy and computer imaging. The cells are shock-frozen in liquid nitrogen at minus 190 degrees. The cell structures remain intact in a quasi-living state, which means that they no longer need to be pre-treated with harmful chemicals. Extremely powerful electron beams also enable scientists to study thick sections or entire flat specimens (up to approximately 500 nm).

Ohad Medalia, a pioneer in the field of cryo-electron microscopy, was appointed as a Professor of Biochemistry at the University of Zurich in 2010. Thanks to the generous support from the Mäxi Foundation, two high-performance electron microscopes of the type “Polara” and “Titan Krios” could be purchased. Today, they are operated together with UZH’s Center for Microscopy and Image Analysis and have expanded UZH’s range of technology considerably.

Contacts:
Prof. Ohad Medalia
Department of Biochemistry
University of Zurich
Tel.: +41 44 635 55 22
Email: omedalia@bioc.uzh.ch

Nathalie Huber
Media Relations
University of Zurich
Tel.: +41 44 634 44 64
Email: nathalie.huber@kommunikation.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Nathalie Huber | Universität Zürich

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>