Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High levels of circulating DNA may signal faster progression of lung cancer

01.02.2011
Simple hTERT analysis may provide useful prognostic tool in advanced non-small cell lung cancer

High levels of circulating DNA may indicate faster progression of lung cancer and lower overall survival, according to a study published in the February edition of the Journal of Thoracic Oncology, the official publication of the International Association for the Study of Lung Cancer (IASLC).

"Thirty-three years ago it was demonstrated that cancer patients presented more free DNA in the blood than healthy people, and further investigations confirmed that much of the circulating DNA in the patients with cancer derives from the tumor," said Rafael Sirera, an associate professor of immunology at the Polytechnic University of Valencia in Valencia, Spain. "Although circulating DNA in established cancers demonstrated a strong power to discriminate patients with lung cancer from those with benign lung diseases or healthy individuals, several critical voices were raised against its relevance for screening and diagnostics."

The study analyzed blood samples from 446 patients with advanced non-small cell lung cancer, all of whom were enrolled in a multicenter clinical trial of the Spanish Lung Cancer Group between February 2003 and January 2005. Levels of free human telomerase reverse transcriptase (hTERT), as a surrogate of circulating DNA, were determined before the planned start of combination chemotherapy with cisplatin and docetaxel.

Patients with hTERT levels below 49.8 nanograms per milliliter (ng/ml) had a median time to progression (TTP) of 6.3 months, compared with 4.9 months for patients with hTERT of more than 49.8 ng/ml.

In addition, patients with the lower hTERT levels had higher overall survival, at 10.9 months versus 9.3 months for patients with higher hTERT.

A key strength of the study was its larger population size, compared with similar studies that included fewer than 100 patients.

"The standardization of sample source, processing, DNA extraction and titration methods gives a strong reliability to our results," Sirera said. "Another important aspect that should be emphasized is that the DNA concentrations in our study did not seem to be influenced by either pretreatment tumor characteristics or clinical variables."

Because hTERT analysis depends on a simple, noninvasive and affordable procedure that can be performed in sequential samples from the same patient, it could be an important aid in therapy evaluations and follow-up of patients with non-small cell lung cancer, Sirera said.

The study was supported in part by the Spanish Society of Medical Oncology.

About the Journal of Thoracic Oncology:

The Journal of Thoracic Oncology (JTO) is the official monthly journal of the International Association for the Study of Lung Cancer (IASLC). It is a prized resource for medical specialists and scientists who focus on the detection, prevention, diagnosis and treatment of lung cancer. It emphasizes a multidisciplinary approach, including original research (clinical trials and translational or basic research), reviews and opinion pieces.

To find out more about the JTO please visit journals.lww.com. To learn more about the IASLC please visit iaslc.org.

Renée McGaw | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>