Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-fat diet and lack of enzyme can lead to heart disease in mice

13.09.2011
It's no secret that a high-fat diet isn't healthy. Now researchers have discovered a molecular clue as to precisely why that is.

Writing in the Journal of Biological Chemistry, Mitchell Lazar, MD, PhD, the Sylvan Eisman Professor of Medicine and director of the Institute for Diabetes, Obesity, and Metabolism at the Perelman School of Medicine at the University of Pennsylvania, and colleagues, describe that mice lacking a gene-expression-controlling enzyme fed a high-fat diet experience rapid thickening of the heart muscle and heart failure.

This molecular link between fat intake and an enzyme tasked with regulating gene expression – at least in mice – has implications for people on so-called Western diets and combating heart disease. Modulating the enzyme's activity could be a new pharmaceutical target.

The team found that the engineered mice without the enzyme HDAC3 tended to underexpress genes important in fat metabolism and energy production. Essentially, when fed a high-fat diet, these animals' hearts cannot generate enough energy and thus cannot pump blood efficiently.

These same mice tolerate a normal diet as well as non-mutant, normal animals. "HDAC3 is an intermediary that normally protects mice from the ravages of a high-fat diet," says Lazar.

HDAC enzymes control gene expression by regulating the accessibility of chromatin - the DNA and protein structure in which genes reside. Within chromatin, DNA is wound around proteins called histones. Genes in tightly wound chromatin areas are generally inaccessible and suppressed, whereas those in loosely packed areas can be activated.

When an animal eats, its metabolism changes, but food doesn't change a cell's genome. Instead, food modulates the "epigenome," molecular markers on the chromatin that influence gene expression by affecting how tightly DNA is wrapped around its protein scaffolding.

Previously, researchers at the University of Texas Southwestern Medical Center showed that if HDAC3 were deleted in heart tissue in the middle of embryonic development, the animals developed severe thickening of the heart walls (hypertrophic cardiomyopathy) that reduces the organ's pumping efficiency. These animals usually died within months of birth.

Lazar and his team wanted to know what would happen if the gene was inactivated in heart tissue after birth. To their surprise, they found that these animals were essentially normal.

On a diet of regular chow, the engineered mice lived as long as their normal littermates, although they did tend to accumulate fat in their heart tissue. On a high-fat diet, however, these animals deteriorated rapidly, dying within a few months of hypertrophic cardiomyopathy and heart failure.

To understand why, Lazar's team compared the gene expression patterns of young mutant mice to their normal siblings. They found that the mutant mice tended to underexpress genes important in fat metabolism and energy production. Essentially, on a high-fat diet, these animals' hearts cannot generate enough energy and thus cannot pump blood efficiently.

According to Lazar, this study identifies an "interesting and dramatic example" of the link between diet and epigenetics. Now his team is working to identify the molecular nature of that link. They are also investigating whether the same pathway and interaction occurs in humans since it may contribute to the increased heart disease associated with Western diets.

Whatever the outcome of those studies, says Lazar, there is one sure-fire intervention people can always use to stave off the ravages of over-nutrition: Changing your diet. "We don't want to forget that that's still a noble thing to strive for," he says.

Other Penn authors on the study include postdoctoral fellow Zheng Sun, who was lead author, as well as Nikhil Singh, Shannon E. Mullican, Logan J. Everett, Li Li, Lijun Yuan, Xi Liu, and Jonathan A. Epstein, the William Wikoff Smith Professor and Chair of the Department of Cell and Developmental Biology.

The research was funded by the National Institute for Diabetes, Digestive and Kidney Diseases, the National Heart Lung and Blood Institute, and the Cox Institute for Medical Research.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise.

Penn's Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>