Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High definition polarization vision discovered in cuttlefish

21.02.2012
Cuttlefish have the most acute polarization vision yet found in any animal, researchers at the University of Bristol have discovered by showing them movies on a modified LCD computer screen to test their eyesight.
Cuttlefish and their colourblind cousins, squid and octopus, see aspects of light – including polarized light – that are invisible to humans, giving them a covert communication channel. The Bristol study, published today in Current Biology found that cuttlefish were much more sensitive to polarization than previously thought.

Lead researcher Dr Shelby Temple from the Ecology of Vision Laboratory at the University of Bristol said: "Just like colour and intensity, polarization is an aspect of light that can provide animals with information about the world around them. If you've ever put on a pair of polarized sunglasses glasses to cut the glare from water or the road, or gone to a recent 3D movie, then you've observed some aspects of polarized light."

With collaborators at The University of Queensland, Brisbane, Australia, the team gave cuttlefish an eye exam; but instead of measuring their acuity they measured the smallest difference in the angle of polarization the cuttlefish could detect.

Since the team could not ask the cuttlefish what they could see, they took advantage of the chameleon-like colour changes that cuttlefish use for camouflage as a way of measuring whether the animals could detect the polarized stimuli.

"We modified LCD computer monitors to show changes in polarization instead of changes in colour, and then played videos of approaching objects and watched for changes in skin colour patterns to determine if the cuttlefish could see small changes in polarization contrast," said Dr Temple. "Cuttlefish change colour all the time and respond to the slightest movement so they are an excellent model.

"Cuttlefish were much more sensitive than we expected. It was previously thought that polarization sensitivity was limited to about 10-20 degree differences, but we found that cuttlefish could respond to differences as small as one degree."

In addition to measuring the limits of polarization vision in the cuttlefish, the team also modelled how underwater scenes might look to an animal that has such high-resolution polarization vision. Using colours instead of changes in polarization angle they created images of the polarized world that humans can see and showed that there is much more information available in the polarization dimension than was previously known.

Co-author Professor Justin Marshall of The University of Queensland said: "These extraordinary findings suggest that we need to reexamine how we have been measuring the visual world underwater. Cuttlefish may be using the polarization of light much like we use colour, which means we may need to look at camouflage and communication underwater in a whole new way."

Caroline Clancy | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>