Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-altitude climbing causes subtle loss of brain cells and motor function says Everest and K2 study

16.10.2008
A study of professional mountain climbers has shown that high-altitude exposure can cause subtle white and grey matter changes to the area of the brain involved in motor activity, according to the October issue of the European Journal of Neurology.

Italian researchers took MRI scans of nine world-class mountain climbers, who had been climbing for at least 10 years, before and after expeditions to Mount Everest (8,848 metres) and K2 (8,611 metres) without an oxygen supply. They compared their MRI brain scans with 19 age and sex matched healthy control subjects.

Both the climbers and controls were carefully checked to exclude the presence of any major systemic, psychiatric or neurological illnesses. None of the control group subjects had any history of high-altitude exposure over 3,000 metres.

The results demonstrated that the climbers showed a reduction in both the density and volume of white matter in the left pyramidal tract, near the primary and supplementary motor cortex, when their baseline measurements were compared with the control group.

And when the researchers compared the before and after scans for the climbers, they also found a reduction in the density and volume of grey matter in the left angular gyrus.

“The aim of our study was to measure the quantitative loss of white and grey matter, using voxel-based morphometry, which takes spatial, unbiased MRI measurements independent of the operator” explains lead author Dr Margherita Di Paola from the Neuroimaging Laboratory at the IRCCS Fondazione Santa Lucia in Rome.

“The scans were then assessed by two experienced observers who were unaware of whether the scans belonged to the climbers or control group.”

All the climbers who took part in the study - carried out in collaboration with the National Research Council, Institute of Biomedical Technologies, Milan, and the Ev-K2-CNR Committee – were male.

They ranged from 31 to 52 years, with an average age of just under 38, and were used to climbing to altitudes of at least 4,000 metres several times a year.

The researchers took the first scans eight weeks before the expedition began and the second set eight weeks after they returned.

One climber reached the top of Everest and K2 and two reached the top of one mountain. The remainder reached altitudes of over 7,500 metres and spent at least 15 days over altitudes of 6,500 metres.

A number of neuropsychological tests were also carried out to assess the climber’s cognitive abilities, such as memory and motor functions.

“Despite the loss of grey and white matter, the climbers in our study did not suffer any significant neuropsychological changes after the expedition” says Dr Di Paola.

“Some of the subjects did show abnormal scores on the neuropsychological tests, but in these cases there was no significant difference between the baseline and follow up results. This suggests that there were no significant changes as a result of a single expedition.

“As they had been carefully checked for any pathological conditions that could cause these abnormal scores, we conclude that these test results are most likely to be due to progressive, subtle, brain insults caused by repeated high-altitude exposure.”

Overall, the researchers found that the cognitive abilities that were most likely to be affected were the climbers’ executive function and memory. Indeed, six of the nine climbers had lower than average scores on the Digit Symbol test, which measures executive functions such as the ability to anticipate outcomes and adapt to changing situations.

Four scored lower than average on the Block Design test, which measures visuo-motor functions, and three out of nine scored lower than average on the Prose Memory test (immediate recall) and on the Rey’s Figure test (delayed recall), which measure the verbal and visuo-spatial memory respectively.

“Our results provide evidence that extremely high-altitude climbs with no external oxygen supply may cause subtle changes in brain tissue, even when well acclimatised individuals do not experience any neurological symptoms” concludes Dr Di Paola.

“These changes in white and grey matter appear to be highly specific to regions of the brain involved in motor activity.”

Annette Whibley | alfa
Further information:
http://www.blackwellpublishing.com/journal.asp?ref=1351-5101
http://interscience.wiley

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>