Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hide and Seek: Revealing Camouflaged Bacteria

17.04.2014

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so called interferon-induced GTPases reveal and eliminate the bacterium’s camouflage in the cell, enabling the cell to recognize the pathogen and to render it innocuous. The findings are published in the current issue of the science magazine “Nature”.

Bacteria have developed countless strategies to hide themselves in order to evade attack by the immune system. In the body, Salmonella bacteria use macrophages as host cells to ensure their survival and to be able to spread within the body.


GTPases (green) attack Salmonella typhimurium (red).

(Figure: University of Basel, Biozentrum)

Their survival strategy is to nestle into a vacuole within the cytoplasm of a macrophage, hiding there and multiplying. While they are hidden there, the immune cells cannot detect the bacteria and fight them.

Exposure: GTPases destroy Salmonella’s hideout

The macrophages, in which the Salmonella hide, however, have also developed a strategy to unmask the disguise of the bacterium and uncover its hiding place. Prof. Petr Broz’s research group at the Biozentrum of the University of Basel has discovered a protein family called interferon-induced GTPases in host cells invaded by Salmonella.

“They are responsible for destroying the hiding place of the pathogen and to initiate the immune response of the cell,” explains Etienne Meunier, first author of the publication.

Destruction: Kick-off for attacking the bacteria

Once the hiding place has been discovered, GTPases are transported to the vacuole and destabilize its membrane. The bacteria are left behind unprotected in the cytoplasm where their surface molecules are easily recognized by the intracellular defense.

“The GTPases are the key to the hiding place of the bacteria. Once the door has been opened and the protective vacuole destroyed, there is no escape. The bacteria are immediately exposed to the defense machinery of the cell”, says Meunier. Receptors in the cell identify the pathogen, which then activate special cellular enzymes to destroy the bacteria. In addition, the cells own proteases, so-called caspases, are activated and trigger cell death of the infected host cell.

Salmonella still remain a feared pathogenic agent, as they can cause life threatening diarrheal disease. The findings of Broz and his team enable the better understanding of the strategies of the immune cells and to perhaps model this in the future.

The deeper understanding of the immune response of our cells also paves the way for new approaches in using drugs to support the body’s fight against pathogens. In order to further elucidate the mechanisms of the immune response to Salmonella infections, the research team plans to investigate how cells detect the hiding place of the bacteria, the vacuole in the cytoplasm of the macrophages, and what initiates the recruitment of GTPases to the vacuole.

Original Citation
Etienne Meunier, Mathias S. Dick, Roland F. Dreier, Nura Schürmann, Daniela Kenzelmann Broz, Søren Warming, Merone Roose-Girma, Dirk Bumann, Nobuhiko Kayagaki, Kiyoshi Takeda, Masahiro Yamamoto and Petr Broz
Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases
Nature (2014); Advance Online Publication | doi: 10.1038/nature13157

Further Information
Prof. Petr Broz, University of Basel, Biozentrum, phone: +41 61 267 23 42, email: petr.broz@unibas.ch

Heike Sacher | Universität Basel
Further information:
http://www.unibas.ch

Further reports about: Biozentrum Salmonella drugs macrophage mechanisms pathogenic protein responsible strategies

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>