Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hibernating control cells or why inflammations become chronic

10.08.2017

Researchers at FAU discover important mechanism involved in the resolution of inflammations

Rheumatoid arthritis is the most common autoimmune disease of the joints. It causes a chronic inflammatory response, with the body’s own immune cells attacking the joint, including the cartilage and bone. This process does not cease spontaneously.


Simon Rauber (left) and Dr Andreas Ramming (Image: FAU/Andreas Ramming)

An international research team headed by the rheumatologist Dr Andreas Ramming at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) has now managed to identify an immune system cell type that can be used in a targeted attempt to control the inflammatory response in arthritis patients.

The results obtained by the research team at Department of Medicine 3 – Rheumatology and Immunology of Universitätsklinikum Erlangen – have been published in ‘Nature Medicine’.

In Germany some 800,000 people, preliminarily women, suffer from rheumatoid arthritis. This causes persistent inflammation that damages the joints and bones. Patients suffer pain and experience restrictions in terms of their mobility. “A particularly worrying aspect for those affected is the fact that the inflammatory response in joints is exceptionally chronic and thus usually requires lifelong treatment,” explains Prof. Georg Schett, director of the Department of Medicine 3.

Cells known as innate lymphoid cells usually manage the resolution of inflammations.

However, to date, little has been known about how inflammations clear up and why this process does not work in those suffering from rheumatism. Now a joint project involving researchers in London, Barcelona, Zurich, Indianapolis and Dublin has now enabled the researchers in Erlangen to solve this mystery. According to Simon Rauber, an immunologist in Erlangen and primary author of the study, a previously inadequately studied cell population of the immune system called innate lymphoid cells plays a major role in the resolution of inflammations.

It seems that innate lymphoid cells go into a kind of ‘hibernation’ in patients with rheumatism.

“In patients suffering from rheumatoid arthritis, these innate lymphoid cells are in a state of what can be described as hibernation and as a result the inflammation persists. When innate lymphoid cells are ‘woken up’, this puts a stop to the inflammation and to the damage to the joint,” adds principal investigator Dr Ramming. The discovery of this important mechanism could provide the opportunity to develop completely new options for treating chronic inflammatory diseases.

New forms of treatment monitoring

Even at this stage, measuring the number of innate lymphoid cells in the blood makes it possible to provide a prognosis of the effects of treatment. If there are few innate lymphoid cells in the blood, the disease will flare up and the joint will be further damaged. However, resolution of inflammation is associated with an elevation in the number of these cells. The measurement of blood levels makes it possible to initiate individual, more targeted treatment at an early stage, thus preventing another flare-up of the disease. “These findings will make it possible to significantly improve the quality of treatment of rheumatoid arthritis in future with the help of innate lymphoid cells,” says Dr Ramming.

Together against inflammation

“Collaborative Research Centre 1181 at Universitätsklinikum Erlangen and the priority programme ‘Innate Lymphoid Cells’ (SPP 1937) of the German Research Foundation (DFG) have made a decisive contribution to revealing this central immunological mechanism involved in the resolution of inflammations,” concludes Prof. Schett. The results of this study have been published in the journal Nature Medicine in an article entitled ‘Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells’ (DOI: http://dx.doi.org/10.1038/nm.4373).

Further information:
Dr. Andreas Ramming
Phone: +49 9131 8539109
andreas.ramming@uk-erlangen.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Further information:
http://www.fau.de/

More articles from Life Sciences:

nachricht The body's street sweepers
18.12.2017 | Ludwig-Maximilians-Universität München

nachricht Life on the edge prepares plants for climate change
18.12.2017 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>