Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HeveaMET: New GREEN biosorbent to Remove Heavy Metals

03.12.2009
MEGAT AHMAD KAMAL B MEGAT HANAFIAH of UiTM used the leaves of rubber trees to remove Cu(II) and Ni(II) ions from wastewater.

This study produced a biosorbent called HeveaMET obtained from rubber leaf powder, chemically modified with NaOH, to remove Cu(II) and Ni(II) ions from wastewater.

The presence of heavy metals in the environment is of major concern because of their toxicity, bioaccumulation, and threat to human life and environment. The removal of heavy metals from our environment especially wastewater, is shifted from using electrolysis, chemical precipitation, electroflotation, oxidation-reduction, solvent extraction and ion-exchange to the use of biosorbents.

In recent years, many low cost biosorbents obtained from lignocellulosic agricultural by-products have been investigated for their biosorption capacity towards heavy metals. Agricultural wastes are now becoming viable alternatives since they are abundantly available, much cheaper and have various functional groups such as carboxylic acid, ester, carboxylate, hydroxyl, phenolic and amino that can act as adsorption sites for heavy metal ions.

In Malaysia, more than 1.2 million ha of lands are planted with rubber trees and every year, mature rubber leaves (brownish in color) will fall to the ground during the dry season (January to March) producing a huge amount of solid waste. The conversion of this type of plant waste into a low cost heavy metal biosorbent offers a cost effective and green alternative to existing technologies to treat metal laden wastewater.

In this work, the data obtained from column experiment indicated that 10 g of HeveaMET was able to remove 7.1 and 11.1 L of Cu(II) and Ni(II) ions at 10 mg/L concentration, respectively. HeveaMET was able to be regenerated using 0.1 M HCl or HNO3 and reused for three cycles. The main mechanisms involved in heavy metals removal were ion-exchange, complexation and physical adsorption. Due to the high volumes of Cu(II) and Ni(II) that could be treated and the low cost of production (~ RM5/kg), HeveMET ha.

Reported by Megawati Omar
Research Management Institute
UiTM
Shah Alam

Megawati Omar | Research asia research news
Further information:
http://inforec.uitm.edu.my
http://www.researchsea.com

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>