Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HeveaMET: New GREEN biosorbent to Remove Heavy Metals

03.12.2009
MEGAT AHMAD KAMAL B MEGAT HANAFIAH of UiTM used the leaves of rubber trees to remove Cu(II) and Ni(II) ions from wastewater.

This study produced a biosorbent called HeveaMET obtained from rubber leaf powder, chemically modified with NaOH, to remove Cu(II) and Ni(II) ions from wastewater.

The presence of heavy metals in the environment is of major concern because of their toxicity, bioaccumulation, and threat to human life and environment. The removal of heavy metals from our environment especially wastewater, is shifted from using electrolysis, chemical precipitation, electroflotation, oxidation-reduction, solvent extraction and ion-exchange to the use of biosorbents.

In recent years, many low cost biosorbents obtained from lignocellulosic agricultural by-products have been investigated for their biosorption capacity towards heavy metals. Agricultural wastes are now becoming viable alternatives since they are abundantly available, much cheaper and have various functional groups such as carboxylic acid, ester, carboxylate, hydroxyl, phenolic and amino that can act as adsorption sites for heavy metal ions.

In Malaysia, more than 1.2 million ha of lands are planted with rubber trees and every year, mature rubber leaves (brownish in color) will fall to the ground during the dry season (January to March) producing a huge amount of solid waste. The conversion of this type of plant waste into a low cost heavy metal biosorbent offers a cost effective and green alternative to existing technologies to treat metal laden wastewater.

In this work, the data obtained from column experiment indicated that 10 g of HeveaMET was able to remove 7.1 and 11.1 L of Cu(II) and Ni(II) ions at 10 mg/L concentration, respectively. HeveaMET was able to be regenerated using 0.1 M HCl or HNO3 and reused for three cycles. The main mechanisms involved in heavy metals removal were ion-exchange, complexation and physical adsorption. Due to the high volumes of Cu(II) and Ni(II) that could be treated and the low cost of production (~ RM5/kg), HeveMET ha.

Reported by Megawati Omar
Research Management Institute
UiTM
Shah Alam

Megawati Omar | Research asia research news
Further information:
http://inforec.uitm.edu.my
http://www.researchsea.com

More articles from Life Sciences:

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

nachricht If solubilty is the problem - Mechanochemistry is the solution
25.05.2018 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

If solubilty is the problem - Mechanochemistry is the solution

25.05.2018 | Life Sciences

Investigating cell membranes: researchers develop a substance mimicking a vital membrane component

25.05.2018 | Interdisciplinary Research

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>