Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Herpes: Scientists find cellular process that fights virus

Canada-US breakthrough, published in Nature Immunology, explains how mechanism seeks out and fights type 1 herpes simplex

Scientists have discovered a new way for our immune system to combat the elusive virus responsible for cold sores: Type 1 herpes simplex (HSV-1).

As reported in the advance online edition of Nature Immunology, a group of virus hunters from the Université de Montréal, in collaboration with American colleagues, have identified a cellular process that seeks out and fights herpes.

The five-year study, partially supported by the Canadian Institutes of Health Research, was a joint project with Washington University and Pennsylvania State University.

"Once human cells are infected with Type 1 herpes simplex, the virus comes back because it hides and blocks protection from our immune system," says Luc English, the study's lead author and a doctoral student at the Université de Montréal's Department of Pathology and Cell Biology. "For the first time, our research team has indentified a combative cellular mechanism in this game of hide-and-seek."

"We've found that the nuclear membrane of an infected cell can unmask Type 1 herpes simplex and stimulate the immune system to disintegrate the virus," says English.

The team made its discovery while conducting various tests in HSV-1 infected mice cells. They replicated environments when Type 1 herpes simplex thrives, namely periods of low-grade fever between 38.5 to 39 degrees, and found that herpes-fighting mechanisms were unleashed.

The research team now plans to study how activation of the herpes-combating cellular process could be applied to other illnesses. The outcome could hasten the development of therapies to prevent other immune-evading bacteria, parasites and viruses. "Our goal is to further study the molecules implicated in this mechanism to eventually develop therapies against diseases such as HIV or even cancer," says English.

According to Dr. Michel Desjardins, senior author and a professor in the Department of Pathology and Cell Biology at the Université de Montréal, treatment options might be imaginable in a decade.

"Now that we've identified the novel mechanism in cells that activate immune response to Type 1 herpes simplex, scientists are one step closer to creating new treatments that can activate the defence against this and other viruses," says Dr. Desjardins. "While it may not be possible to completely eradicate Type 1 herpes simplex in people who are already infected, at the very least, future therapies may be able to keep the virus in its dormant state."

Partners in research:

This study was funded by the Canadian Institutes of Health Research, the Natural Science and Engineering Research Council of Canada, the Fonds de la Recherche en Santé du Québec, the U.S. National Institutes of Health and the foundation Research to Prevent Blindness.

About Herpes:

There are two types of herpes viruses: Type 1 herpes simplex causes facial cold sores and Type 2 causes genital herpes. Both types of herpes affect an estimated 80 million people in America alone and there is currently no cure for the condition.

About the study:

The paper, "Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection," published in Nature Immunology, was produced by Luc English, Magali Chemali, Johanne Duron, Christiane Rondeau, Annie Laplante, Diane Gingras, Roger Lippe and Michel Desjardins of the Université de Montréal in collaboration with Diane Alexander and David Leib of Washington University and Christopher Norbury of Pennsylvania State University.

On the Web:

About Nature Immunology:
About the Université de Montréal:
About the Department of Pathology and Cell Biology:

Sylvain-Jacques Desjardins | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>