Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hermit crabs socialize to evict their neighbors

29.10.2012
Terrestrial crabs, constrained by lack of suitable shells, must take others' remodeled homes
Social animals usually congregate for protection or mating or to capture bigger prey, but a University of California, Berkeley, biologist has found that the terrestrial hermit crab has a more self-serving social agenda: to kick another crab out of its shell and move into a larger home.

All hermit crabs appropriate abandoned snail shells for their homes, but the dozen or so species of land-based hermit crabs – popular terrarium pets – are the only ones that hollow out and remodel their shells, sometimes doubling the internal volume. This provides more room to grow, more room for eggs – sometimes 1,000 more – and a lighter home to lug around as they forage.

But empty snail shells are rare on land, so the best hope of moving to a new home is to kick others out of their remodeled shells, said Mark Laidre, a UC Berkeley Miller Post-Doctoral Fellow who reported this unusual behavior in this month's issue of the journal Current Biology.

When three or more terrestrial hermit crabs congregate, they quickly attract dozens of others eager to trade up. They typically form a conga line, smallest to largest, each holding onto the crab in front of it, and, once a hapless crab is wrenched from its shell, simultaneously move into larger shells.
"The one that gets yanked out of its shell is often left with the smallest shell, which it can't really protect itself with," said Laidre, who is in the Department of Integrative Biology. "Then it's liable to be eaten by anything. For hermit crabs, it's really their sociality that drives predation."

Laidre says the crabs' unusual behavior is a rare example of how evolving to take advantage of a specialized niche – in this case, land versus ocean – led to an unexpected byproduct: socialization in a typically solitary animal.

"No matter how exactly the hermit tenants modify their shellters, they exemplify an important, if obvious, evolutionary truth: living things have been altering and remodeling their surroundings throughout the history of life," wrote UC Davis evolutionary biologist Geerat J. Vermeij in a commentary in the same journal. For decades, Vermeij has studied how animals' behavior affects their own evolution – what biologists term "niche construction" – as opposed to the well-known Darwinian idea that the environment affects evolution through natural selection.
"Organisms are not just passive pawns subjected to the selective whims of enemies and allies, but active participants in creating and modifying their internal as well as their external conditions of life," Vermeij concluded.

Laidre conducted his studies on the Pacific shore of Costa Rica, where the hermit crab Coenobita compressus can be found by the millions along tropical beaches. He tethered individual crabs, the largest about three inches long, to a post and monitored the free-for-all that typically appeared within 10-15 minutes.

Most of the 800 or so species of hermit crab live in the ocean, where empty snail shells are common because of the prevalence of predators like shell-crushing crabs with wrench-like pincers, snail-eating puffer fish and stomatopods, which have the fastest and most destructive punch of any predator.

On land, however, the only shells available come from marine snails tossed ashore by waves. Their rarity and the fact that few land predators can break open these shells to get at the hermit crab may have led the crabs to remodel the shells to make them lighter and more spacious, Laidre said.

The importance of remodeled shells became evident after an experiment in which he pulled crabs from their homes and instead offered them newly vacated snail shells. None survived. Apparently, he said, only the smallest hermit crabs take advantage of new shells, since only the small hermit crabs can fit inside the unremodeled shells. Even if a crab can fit inside the shell, it still must expend time and energy to hollow it out, and this is something hermit crabs of all sizes would prefer to avoid if possible.

The work was funded by UC Berkeley's Miller Institute.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>