Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Here is the oil in the gulf? FSU researcher takes a look

26.01.2016

A Florida State University researcher and his team have developed a comprehensive analysis of oil in the Gulf of Mexico and determined how much of it occurs naturally and how much came from the 2010 Deepwater Horizon spill.

And more importantly, their data creates a map, showing where the active natural oil seeps are located.


Nature oil seeps, as the one shown here, are plentiful in the Gulf of Mexico.

Courtesy of Ian MacDonald

The research was recently released online by the Journal of Geophysical Research Oceans and is also the basis for a paper with researchers at Columbia University published today in Nature Geoscience.

In total, 4.3 million barrels were released into the Gulf from the oil spill versus an annual release of 160,000 to 600,000 barrels per year from naturally occurring seeps, according to the new results.

"This information gives us context for the Deepwater Horizon spill," said FSU Professor of Oceanography Ian MacDonald. "Although natural seeps are significant over time, the spill was vastly more concentrated in time and space, which is why its impact was so severe."

Among the findings was that dispersants were able to eliminate about 21 percent the oil that floated on the surface of the Gulf of Mexico after the spill, but at the cost of spreading the remaining oil over a 49 percent larger area.

This map of oil also provides a basis for additional scientific research.

Using this new set of data, scientists will be able to go to a controlled area where they already know oil exists and perform controlled observations, as opposed to spilling new oil into an area. It also shows how the Gulf has adapted to natural oil seeps.

Researcher Ajit Subramaniam, an oceanographer at Columbia University's Lamont-Doherty Earth Observatory, used the data set to focus on natural oil seeps and discovered something unusual -- phytoplankton, the base of the marine food chain -- were thriving in the area of these natural oil seeps. The results published in Nature Geoscience show that phytoplankton concentrations near the oil seeps were as much as twice as productive as those a few kilometers away where there were no seeps.

"This is the beginning of evidence that some microbes in the Gulf may be preconditioned to survive with oil, at least at lower concentrations," Subramaniam said. "In this case, we clearly see these phytoplankton are not negatively affected at low concentrations of oil, and there is an accompanying process that helps them thrive. This does not mean that exposure to oil at all concentrations for prolonged lengths of time is good for phytoplankton."

MacDonald had been working on data using satellite images of natural oil seeps for 10 years, and added in the Deepwater Horizon spill work a few years ago.

"It's giving us a basis for all of these other experiments," MacDonald said. "It's really revolutionizing how we look at the Gulf. It also gives scientists the exact geographic points where oil from the spill was located, so researchers can go to the Gulf floor and explore the area to see if there has been any environmental effect."

###

This research was funded by the Bureau of Ocean Energy Management, the Department of Energy, the National Science Foundation and the Gulf of Mexico Research Initiative.

Media Contact

Kathleen Haughney
khaughney@fsu.edu
850-644-1489

 @floridastate

http://www.fsu.edu 

Kathleen Haughney | EurekAlert!

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>