Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helping neurons find their way

26.10.2009
Variations in the spatial distribution of cellular signaling molecules provide the information needed to steer neuron growth within the brain

As the brain develops, neuronal axons extend outward in search of other neurons, all the while receiving ‘directions’ from the extracellular environment in the form of chemical signals that indicate when and where these growing axons should turn.

For example, axons exposed to a gradient distribution of nerve growth factor (NGF) protein will automatically steer in the direction of highest NGF concentration.

“NGF is one of the most extensively studied molecules that direct axon elongation,” explains Hiroyuki Kamiguchi of the RIKEN Brain Science Institute in Wako. “However, it has remained unclear for a long time how axons change the direction of elongation in response to NGF.”

NGF-mediated turning is facilitated in part by the cellular signaling molecule inositol trisphosphate (IP3), which in turn governs the intracellular release of calcium ions—an essential component of NGF’s chemo-attractive action. By applying advanced methods for molecular-resolution live cell imaging, Kamiguchi and his colleagues have now gained valuable insights into how this process directs axonal guidance1.

The researchers cultured chick-derived neurons expressing a genetically encoded sensor that fluoresces at specific wavelengths in the presence of IP3, and then observed how individual neurons responded to an NGF gradient in the vicinity of the growth cone—the leading edge of a growing axon. They immediately noted the establishment of an asymmetric distribution of IP3 within the growth cone and an elevated signal on the growth cone side exposed to higher NGF levels; this is mirrored by a similarly uneven distribution of IP3-induced calcium release. This asymmetry correlates directly with axonal turning such that the growth cone steers in the direction established by the highest levels of NGF, IP3 and calcium ion (Ca2+) release.

The development of techniques for accurately detecting potentially subtle variations in IP3 distribution was a key component of their success in this work. “We needed to detect 1% differences in fluorescence emission from the IP3 sensor between both sides of the growth cone,” says Kamiguchi.

However, he considers even the mere existence of such a gradient across the 10–20 micron width of the growth cone to be fairly surprising. “Because IP3 diffuses so rapidly in cytoplasm, it has not been viewed as a highly localized messenger,” he says. “This suggests the existence of robust degradation machinery to localize IP3 signals to one side of the growth cone.”

These insights into how neurons establish direction-specific signaling profiles should provide helpful starting points for understanding other models of cell polarization and migration.

The corresponding author for this highlight is based at the Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute.

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6060
http://www.researchsea.com

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>