Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helping neurons find their way

26.10.2009
Variations in the spatial distribution of cellular signaling molecules provide the information needed to steer neuron growth within the brain

As the brain develops, neuronal axons extend outward in search of other neurons, all the while receiving ‘directions’ from the extracellular environment in the form of chemical signals that indicate when and where these growing axons should turn.

For example, axons exposed to a gradient distribution of nerve growth factor (NGF) protein will automatically steer in the direction of highest NGF concentration.

“NGF is one of the most extensively studied molecules that direct axon elongation,” explains Hiroyuki Kamiguchi of the RIKEN Brain Science Institute in Wako. “However, it has remained unclear for a long time how axons change the direction of elongation in response to NGF.”

NGF-mediated turning is facilitated in part by the cellular signaling molecule inositol trisphosphate (IP3), which in turn governs the intracellular release of calcium ions—an essential component of NGF’s chemo-attractive action. By applying advanced methods for molecular-resolution live cell imaging, Kamiguchi and his colleagues have now gained valuable insights into how this process directs axonal guidance1.

The researchers cultured chick-derived neurons expressing a genetically encoded sensor that fluoresces at specific wavelengths in the presence of IP3, and then observed how individual neurons responded to an NGF gradient in the vicinity of the growth cone—the leading edge of a growing axon. They immediately noted the establishment of an asymmetric distribution of IP3 within the growth cone and an elevated signal on the growth cone side exposed to higher NGF levels; this is mirrored by a similarly uneven distribution of IP3-induced calcium release. This asymmetry correlates directly with axonal turning such that the growth cone steers in the direction established by the highest levels of NGF, IP3 and calcium ion (Ca2+) release.

The development of techniques for accurately detecting potentially subtle variations in IP3 distribution was a key component of their success in this work. “We needed to detect 1% differences in fluorescence emission from the IP3 sensor between both sides of the growth cone,” says Kamiguchi.

However, he considers even the mere existence of such a gradient across the 10–20 micron width of the growth cone to be fairly surprising. “Because IP3 diffuses so rapidly in cytoplasm, it has not been viewed as a highly localized messenger,” he says. “This suggests the existence of robust degradation machinery to localize IP3 signals to one side of the growth cone.”

These insights into how neurons establish direction-specific signaling profiles should provide helpful starting points for understanding other models of cell polarization and migration.

The corresponding author for this highlight is based at the Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute.

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6060
http://www.researchsea.com

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>