Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heidelberg Researchers Decode Key Component of Cellular Protein Transport System

04.04.2014

Central element of signal recognition particle characterised through structural biology

In their research on cellular protein transport, Heidelberg researchers have succeeded in characterising the structure and function of another important element of this complex transport system. At centre stage is the signal recognition particle, or SRP, the molecular “postman” for the sorting and membrane insertion of proteins. The team led by Prof. Dr. Irmgard Sinning of the Heidelberg University Biochemistry Center was now able to decode an important and so far not characterised SRP component. The results of this research were published today in “Science”.

Every cell contains hundreds of proteins, more than a third of which must be sorted out for incorporation into cell membranes or export from the cell. SRP is the molecular “postman” responsible for this process. Cellular traffic falls apart without SRP logistics. With the aid of a built-in transport signal, SRP packages are retrieved right at the ribosomes, the synthesis factories of the cell. From there they go to the outbox, the translocation channel. In the human organism, SRP is a macromolecular complex consisting of a ribonucleic acid, the SRP RNA, and six proteins bound to it. While four of these proteins are understood at the atomic-detail level, the two largest ones – SRP68 and SRP72 – had “stubbornly resisted closer study,” explains Prof. Sinning.

The Structural Biology department headed by Irmgard Sinning has now succeeded in characterising an essential component of the SRP system, the RNA binding domain of SRP68. The Heidelberg researchers were focussed on how this protein binds to SRP RNA. They discovered that SRP68 has an arginine-rich motif (ARM), which is not only responsible for binding, but also significantly alters the structure of the SRP RNA. The “strong ARM” bends the RNA into its functional form. “Without this modification, the SRP would not be able to bind to the ribosomes correctly, which would block transport of newly synthesized proteins to the translocation channel,” adds Prof. Sinning.

The analysis of earlier electron microscopy and biochemical data allows for even further conclusions. Bending the RNA pushes two bases outward, which make direct contact with the ribosome. Once the translocation channel is reached, the contact breaks off, and these bases are available for regulating the motor system of translocation. “Our research on the ‘strong ARM’ of protein translocation allowed us to fill in one of the last remaining gaps of the SRP system,” underscores Dr. Klemens Wild from Prof. Sinning’s department.

Internet information:
http://www.bzh.uni-heidelberg.de/sinning

Original publication:
J.T. Grotwinkel, K. Wild, B. Segnitz and I. Sinning: SRP RNA Remodeling by SRP68 Explains Its Role in Protein Translocation, Science (4 April 2014), Vol. 344 no. 6179 pp. 101-104, doi: 10.1126/science.1249094

Contact:
Prof. Dr. Irmgard Sinning
Heidelberg University Biochemistry Center
Phone: +49 6221 54-4781
irmi.sinning@bzh.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw

Further reports about: Biochemistry Cellular Component Protein RNA SRP Sinning binding breaks proteins responsible ribosomes structure translocation

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>