Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heidelberg Researchers Decode Key Component of Cellular Protein Transport System

04.04.2014

Central element of signal recognition particle characterised through structural biology

In their research on cellular protein transport, Heidelberg researchers have succeeded in characterising the structure and function of another important element of this complex transport system. At centre stage is the signal recognition particle, or SRP, the molecular “postman” for the sorting and membrane insertion of proteins. The team led by Prof. Dr. Irmgard Sinning of the Heidelberg University Biochemistry Center was now able to decode an important and so far not characterised SRP component. The results of this research were published today in “Science”.

Every cell contains hundreds of proteins, more than a third of which must be sorted out for incorporation into cell membranes or export from the cell. SRP is the molecular “postman” responsible for this process. Cellular traffic falls apart without SRP logistics. With the aid of a built-in transport signal, SRP packages are retrieved right at the ribosomes, the synthesis factories of the cell. From there they go to the outbox, the translocation channel. In the human organism, SRP is a macromolecular complex consisting of a ribonucleic acid, the SRP RNA, and six proteins bound to it. While four of these proteins are understood at the atomic-detail level, the two largest ones – SRP68 and SRP72 – had “stubbornly resisted closer study,” explains Prof. Sinning.

The Structural Biology department headed by Irmgard Sinning has now succeeded in characterising an essential component of the SRP system, the RNA binding domain of SRP68. The Heidelberg researchers were focussed on how this protein binds to SRP RNA. They discovered that SRP68 has an arginine-rich motif (ARM), which is not only responsible for binding, but also significantly alters the structure of the SRP RNA. The “strong ARM” bends the RNA into its functional form. “Without this modification, the SRP would not be able to bind to the ribosomes correctly, which would block transport of newly synthesized proteins to the translocation channel,” adds Prof. Sinning.

The analysis of earlier electron microscopy and biochemical data allows for even further conclusions. Bending the RNA pushes two bases outward, which make direct contact with the ribosome. Once the translocation channel is reached, the contact breaks off, and these bases are available for regulating the motor system of translocation. “Our research on the ‘strong ARM’ of protein translocation allowed us to fill in one of the last remaining gaps of the SRP system,” underscores Dr. Klemens Wild from Prof. Sinning’s department.

Internet information:
http://www.bzh.uni-heidelberg.de/sinning

Original publication:
J.T. Grotwinkel, K. Wild, B. Segnitz and I. Sinning: SRP RNA Remodeling by SRP68 Explains Its Role in Protein Translocation, Science (4 April 2014), Vol. 344 no. 6179 pp. 101-104, doi: 10.1126/science.1249094

Contact:
Prof. Dr. Irmgard Sinning
Heidelberg University Biochemistry Center
Phone: +49 6221 54-4781
irmi.sinning@bzh.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw

Further reports about: Biochemistry Cellular Component Protein RNA SRP Sinning binding breaks proteins responsible ribosomes structure translocation

More articles from Life Sciences:

nachricht Opening the cavity floodgates
23.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Incentive to Move
23.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Researchers reveal how microbes cope in phosphorus-deficient tropical soil

23.01.2018 | Earth Sciences

Opening the cavity floodgates

23.01.2018 | Life Sciences

Siberian scientists suggested a new method for synthesizing a promising magnetic material

23.01.2018 | Materials Sciences

VideoLinks Science & Research
Overview of more VideoLinks >>>