Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heidelberg Researchers Decode Key Component of Cellular Protein Transport System

04.04.2014

Central element of signal recognition particle characterised through structural biology

In their research on cellular protein transport, Heidelberg researchers have succeeded in characterising the structure and function of another important element of this complex transport system. At centre stage is the signal recognition particle, or SRP, the molecular “postman” for the sorting and membrane insertion of proteins. The team led by Prof. Dr. Irmgard Sinning of the Heidelberg University Biochemistry Center was now able to decode an important and so far not characterised SRP component. The results of this research were published today in “Science”.

Every cell contains hundreds of proteins, more than a third of which must be sorted out for incorporation into cell membranes or export from the cell. SRP is the molecular “postman” responsible for this process. Cellular traffic falls apart without SRP logistics. With the aid of a built-in transport signal, SRP packages are retrieved right at the ribosomes, the synthesis factories of the cell. From there they go to the outbox, the translocation channel. In the human organism, SRP is a macromolecular complex consisting of a ribonucleic acid, the SRP RNA, and six proteins bound to it. While four of these proteins are understood at the atomic-detail level, the two largest ones – SRP68 and SRP72 – had “stubbornly resisted closer study,” explains Prof. Sinning.

The Structural Biology department headed by Irmgard Sinning has now succeeded in characterising an essential component of the SRP system, the RNA binding domain of SRP68. The Heidelberg researchers were focussed on how this protein binds to SRP RNA. They discovered that SRP68 has an arginine-rich motif (ARM), which is not only responsible for binding, but also significantly alters the structure of the SRP RNA. The “strong ARM” bends the RNA into its functional form. “Without this modification, the SRP would not be able to bind to the ribosomes correctly, which would block transport of newly synthesized proteins to the translocation channel,” adds Prof. Sinning.

The analysis of earlier electron microscopy and biochemical data allows for even further conclusions. Bending the RNA pushes two bases outward, which make direct contact with the ribosome. Once the translocation channel is reached, the contact breaks off, and these bases are available for regulating the motor system of translocation. “Our research on the ‘strong ARM’ of protein translocation allowed us to fill in one of the last remaining gaps of the SRP system,” underscores Dr. Klemens Wild from Prof. Sinning’s department.

Internet information:
http://www.bzh.uni-heidelberg.de/sinning

Original publication:
J.T. Grotwinkel, K. Wild, B. Segnitz and I. Sinning: SRP RNA Remodeling by SRP68 Explains Its Role in Protein Translocation, Science (4 April 2014), Vol. 344 no. 6179 pp. 101-104, doi: 10.1126/science.1249094

Contact:
Prof. Dr. Irmgard Sinning
Heidelberg University Biochemistry Center
Phone: +49 6221 54-4781
irmi.sinning@bzh.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw

Further reports about: Biochemistry Cellular Component Protein RNA SRP Sinning binding breaks proteins responsible ribosomes structure translocation

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>