Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heidelberg Researchers Create Three-dimensional Model of Bacterium

15.08.2013
New methods of electron microscopy decode the structure of Gemmata obscuriglobus

Certain bacteria can build such complex membrane structures that, in terms of complexity and dynamics, look like eukaryotes, i.e., organisms with a distinct membrane-bound nucleus. Scientists from Heidelberg University and the European Molecular Biology Laboratory (EMBL) made this discovery employing new methods in electron microscopy.

The research team succeeded in building a three-dimensional model of the Gemmata obscuriglobus bacterium, including the structure of its membrane system. Their studies proved, however, that the G. obscuriglobus does not have a “true” nucleus. Despite this outlier characteristic, it remains classified as a bacterium and thus a so-called prokaryote. The results of their research were published in “PloS Biology”.

“Since the beginning of microscopy, cells of living organisms have been classified into one of two categories,” explains Dr. Damien Devos, a researcher at the Centre for Organismal Studies (COS) at Heidelberg University. Eukaryotes “pack” their genetic material, their DNA, in an area enclosed in a membrane, the nucleus. Prokaryotes, however, which also include bacteria, do not have that type of cell nucleus. Several years ago, analyses using new techniques of two-dimensional imaging had suggested that the genetic material of G. obscuriglobus was surrounded by a double membrane – this and other unique characteristics of membrane structure called into question the differentiation between prokaryotes and eukaryotes.

“The possibility that a bacterium could have a structure similar to a cell nucleus threatened to unhinge one of the central assumptions of biology on which countless other analyses and interpretations were based,” explains Damien Devos. To study the unique features of the membrane structure in the G. obscuriglobus more closely, the Heidelberg researchers divided the bacterium into thin slices and examined them using an electron microscope. The slices were used to detect the membranes, track their course throughout the entire bacterium and reconstruct their organisation on the computer. This created a virtual model of G. obscuriglobus, which enabled the researchers to visualise the membrane organisation in three-dimensional space and analyse how the membranes were structured within the cell.

The studies demonstrated that the membranes within the G. obscuriglobus are only one part of the interior membrane that is present in all bacteria and that surrounds the cytoplasm. “G. obscuriglobus also evidenced additional characteristics that are found in other bacteria,” explains Damien Devos. According to the researcher, these results disprove the assumption of the existence of a bacterial cell nucleus. “The cell structure and the membranes of the Gemmata obscuriglobus are simply more complex than in ‘classic’ bacteria. Therefore, G. obscuriglobus does not constitute a new, separate group of organisms, and it cannot be classified a eukaryote,” says Dr. Devos, who collaborated with Rachel Santarella-Mellwig of the European Molecular Biology Laboratory.

Film material on the Internet: http://www.bork.embl.de/~devos/project/apache/htdocs/plancto/g3d/

Other information on the Internet: http://www.cos.uni-heidelberg.de/index.php/j.wittbrodt/d.devos

Original publication:
Santarella-Mellwig R, Pruggnaller S, Roos N, Mattaj IW, Devos DP (2013) Three-Dimensional Reconstruction of Bacteria with a Complex Endomembrane System. PLoS Biol 11(5): e1001565. doi:10.1371/journal.pbio.1001565
Contact:
Dr. Damien Devos
Centre for Organismal Studies (COS)
Phone +49 6221 54-6254
devos@cos.uni-heidelberg.de
Communications and Marketing
Press Office
phone: +49 6221 542311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>