Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hebrew University Scientists reveal mechanism that triggers differentiation of embryo cells

22.12.2008
Can have consequences for replacement cell therapy

The mechanism whereby embryonic cells stop being flexible and turn into more mature cells that can develop into specific tissues has been discovered by scientists at the Hebrew University of Jerusalem. The discovery has significant consequences towards furthering research that will eventually make possible medical cell replacement therapy based on the use of embryonic cells.

At a very early stage of human development, all cells of the embryo are identical, but unlike adult cells are very flexible and carry within them the potential to become any tissue type, whether it be muscle, skin, liver or brain.

This cell differentiation process begins at about the time that the embryo settles into the uterus. In terms of the inner workings of the cell, this involves two main control mechanisms. On the one hand, the genes that keep the embryo in their fully potent state are turned off, and at the same time, tissue-specific genes are turned on. By activating a certain set of genes, the embryo can make muscle cells. By turning on a different set, these same immature cells can become liver. Other gene sets are responsible for additional tissues.

In a recent paper, published in the journal, Nature Structural and Molecular Biology, Professors Yehudit Bergman and Howard Cedar of the Hebrew University-Hadassah Medical School have deciphered the mechanism whereby embryonic cells stop being flexible and turn into more mature cells that can differentiate into specific tissues. Bergman is the Morley Goldblatt Professor of Cancer Research and Experimental Medicine and Cedar is the Harry and Helen L. Brenner Professor of Molecular Biology at the Medical School.

They found in their experiments, using embryos from laboratory mice and cells that grow in culture, that this entire process is actually controlled by a single gene, called G9a, which itself is capable of directing a whole program of changes that involves turning off a large set of genes so that they remain locked for the entire lifetime of the organism, thereby unable to activate any further cell flexibility.

Their studies shed light not only on this central process, but also can have consequences for medical treatment. One of the biggest challenges today is to generate new tissues for replacing damaged cells in a variety of different diseases, such as Parkinson’s disease or diabetes. Many efforts have been aimed at “reprogramming” readily-available adult cells, but scientists have discovered that it is almost impossible to do this, mainly because normal tissues are locked in their fixed program and have lost their ability to convert back to fully potent, flexible, embryonic cells.

Now, with the new information discovered by Bergman and Cedar, the molecular program that is responsible for turning off cell flexibility has been identified, and this may clear the way towards developing new approaches to program cells in a controlled and specific manner.

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>