Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hebrew University, other researchers identify two distinguishable gene groups, one ‘normal’ and the other problematic

23.04.2012
Discovery has implications for future patient treatment

Researchers at the Hebrew University of Jerusalem and other institutions have identified two distinguishable groups of genes: those that produce very abundant biochemical products in the cell and function properly in the majority of biological processes, and a flexible subset that might have abnormal function in a disease.

They demonstrated that these two groups can be found among various organisms and cell types, including stem cells and cancer cells.

One set of genes is a robust network that conducts the basic functions of all cells, such as producing energy and biochemical building blocks. This group represents the “hard core” of different organisms.

The biochemical products produced by the other group of genes are less abundant in organisms, and their amount might vary significantly between different types of normal and diseased cells and even between different cancer cells derived from patients with the same type of cancer.

This dramatic variation between patients with the same disease has clear implications for personalized medicine. It implies that detailed analysis of each patient will be required in order to determine the exact type of patient-oriented therapy needed.

The work on defining the two gene sets was described in a recent article in the Proceedings of the National Academy of Sciences in the US. The authors were Dr.Nataly Kravchenko-Balasha, a former graduate student at the Silberman Institute of life sciences at the Hebrew University and currently a post-doctoral fellow at the California Institute of Technology in Pasadena; Prof.Alexander Levitzki, who was Kravchenko-Balahsha’s Ph.D. advisor; Prof. Raphael D. Levine from the Fritz Haber Research Institute for Molecular Dynamics at the Hebrew University; and colleagues from three other institutes: Prof.Varda Rotter (Weizmann Institute of Science), Prof. Francoise Remacle (Université de Liège), and Dr. Andrew Goldstein (University of California, Los Angeles); plus Dr. Ayelet Gross (the Hebrew University).

CONTACT:
Jerry Barach, Hebrew University Foreign Press Liaison
02-5882904 (international: 972-2-5882904)
jerryb@savion.huji.ac.il
Orit Sulitzeanu, Hebrew University Spokesperson
02-5882910, mobile: 054-882-0016
orits@savion.huji.ac.il

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>