Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hebrew University, other researchers identify two distinguishable gene groups, one ‘normal’ and the other problematic

23.04.2012
Discovery has implications for future patient treatment

Researchers at the Hebrew University of Jerusalem and other institutions have identified two distinguishable groups of genes: those that produce very abundant biochemical products in the cell and function properly in the majority of biological processes, and a flexible subset that might have abnormal function in a disease.

They demonstrated that these two groups can be found among various organisms and cell types, including stem cells and cancer cells.

One set of genes is a robust network that conducts the basic functions of all cells, such as producing energy and biochemical building blocks. This group represents the “hard core” of different organisms.

The biochemical products produced by the other group of genes are less abundant in organisms, and their amount might vary significantly between different types of normal and diseased cells and even between different cancer cells derived from patients with the same type of cancer.

This dramatic variation between patients with the same disease has clear implications for personalized medicine. It implies that detailed analysis of each patient will be required in order to determine the exact type of patient-oriented therapy needed.

The work on defining the two gene sets was described in a recent article in the Proceedings of the National Academy of Sciences in the US. The authors were Dr.Nataly Kravchenko-Balasha, a former graduate student at the Silberman Institute of life sciences at the Hebrew University and currently a post-doctoral fellow at the California Institute of Technology in Pasadena; Prof.Alexander Levitzki, who was Kravchenko-Balahsha’s Ph.D. advisor; Prof. Raphael D. Levine from the Fritz Haber Research Institute for Molecular Dynamics at the Hebrew University; and colleagues from three other institutes: Prof.Varda Rotter (Weizmann Institute of Science), Prof. Francoise Remacle (Université de Liège), and Dr. Andrew Goldstein (University of California, Los Angeles); plus Dr. Ayelet Gross (the Hebrew University).

CONTACT:
Jerry Barach, Hebrew University Foreign Press Liaison
02-5882904 (international: 972-2-5882904)
jerryb@savion.huji.ac.il
Orit Sulitzeanu, Hebrew University Spokesperson
02-5882910, mobile: 054-882-0016
orits@savion.huji.ac.il

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>