Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hebrew U. scientists identify molecular basis for DNA breakage, a hallmark of cancer cells

Scientists from the Hebrew University have identified the molecular basis for DNA breakage, a hallmark of cancer cells. The findings of this research will be published tomorrow in the prestigious journal Molecular Cell.

The DNA encodes the entire genetic information required for building the proteins of the cell. Hence, DNA breaks disrupt the proteins and lead to changes in the cell function. These changes can lead to defects in the control of cellular proliferation resulting in cancer development.

Using cutting edge technologies, researchers Prof. Batsheva Kerem and doctorate student Efrat Ozeri-Galai, of the Alexander Silverman Institute of Life Sciences in the Faculty of Science were able to characterize for the first time the DNA regions which are the most sensitive regions to breakage in early stages of cancer development. This is a breakthrough in our understanding of the effect of the DNA sequence and structure on its replication and stability.

"A hallmark of most human cancers is accumulation of damage in the DNA, which drives cancer development," says Prof. Kerem. "In the early stages of cancer development, the cells are forced to proliferate. In each cycle of proliferation the DNA is replicated to ensure that the daughter cells have a full DNA. However, in these early stages the conditions for DNA replication are perturbed, leading to DNA breaks, which occur specifically in regions defined as 'fragile sites'."

In this research Prof. Kerem and Ozeri-Galai used a sophisticated new methodology which enables the study of single DNA molecules, in order to study the basis for the specific sensitivity of the fragile sites. The findings are highly important since they shed new light on the DNA features and on the regulation of DNA replication along the first regions that break in cancer development.
The results show that along the fragile region there are sites that slow the DNA replication and even stop it. In order to allow completion of the DNA replication the cells activate already under normal conditions mechanisms that are usually used under stress. As a result, under conditions of replication stress, such as in early cancer development stages, the cell has no more tools to overcome the stress, and the DNA breaks.

The results of this study reveal the molecular mechanism that promotes cancer development. Currently, different studies focus on the very early stages of cancer development aiming to identify the events leading to cancer on the one hand and on their inhibition, on the other. The result of the current research identified for the first time DNA features that regulate DNA replication along the fragile sites, in early stages of cancer development. In the future, these findings could lead to the development of new therapeutic approaches to restrain and/or treat cancer.
For information, contact:
Rebecca Zeffert, Dept. of Media Relations, the Hebrew University, tel: 02-588-1641, cell: 054-882-0661
Orit Sulitzeanu, Hebrew University spokesperson, tel: 02-5882910, cell: 054-882-0016.

Internet site:

Rebecca Zeffert | Hebrew University
Further information:

Further reports about: DNA DNA molecule DNA replication cancer development early stage

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>