Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hebrew U. scientists identify molecular basis for DNA breakage, a hallmark of cancer cells

08.07.2011
Scientists from the Hebrew University have identified the molecular basis for DNA breakage, a hallmark of cancer cells. The findings of this research will be published tomorrow in the prestigious journal Molecular Cell.

The DNA encodes the entire genetic information required for building the proteins of the cell. Hence, DNA breaks disrupt the proteins and lead to changes in the cell function. These changes can lead to defects in the control of cellular proliferation resulting in cancer development.

Using cutting edge technologies, researchers Prof. Batsheva Kerem and doctorate student Efrat Ozeri-Galai, of the Alexander Silverman Institute of Life Sciences in the Faculty of Science were able to characterize for the first time the DNA regions which are the most sensitive regions to breakage in early stages of cancer development. This is a breakthrough in our understanding of the effect of the DNA sequence and structure on its replication and stability.

"A hallmark of most human cancers is accumulation of damage in the DNA, which drives cancer development," says Prof. Kerem. "In the early stages of cancer development, the cells are forced to proliferate. In each cycle of proliferation the DNA is replicated to ensure that the daughter cells have a full DNA. However, in these early stages the conditions for DNA replication are perturbed, leading to DNA breaks, which occur specifically in regions defined as 'fragile sites'."

In this research Prof. Kerem and Ozeri-Galai used a sophisticated new methodology which enables the study of single DNA molecules, in order to study the basis for the specific sensitivity of the fragile sites. The findings are highly important since they shed new light on the DNA features and on the regulation of DNA replication along the first regions that break in cancer development.
The results show that along the fragile region there are sites that slow the DNA replication and even stop it. In order to allow completion of the DNA replication the cells activate already under normal conditions mechanisms that are usually used under stress. As a result, under conditions of replication stress, such as in early cancer development stages, the cell has no more tools to overcome the stress, and the DNA breaks.

The results of this study reveal the molecular mechanism that promotes cancer development. Currently, different studies focus on the very early stages of cancer development aiming to identify the events leading to cancer on the one hand and on their inhibition, on the other. The result of the current research identified for the first time DNA features that regulate DNA replication along the fragile sites, in early stages of cancer development. In the future, these findings could lead to the development of new therapeutic approaches to restrain and/or treat cancer.
For information, contact:
Rebecca Zeffert, Dept. of Media Relations, the Hebrew University, tel: 02-588-1641, cell: 054-882-0661
Orit Sulitzeanu, Hebrew University spokesperson, tel: 02-5882910, cell: 054-882-0016.

Internet site: http://media.huji.ac.il

Rebecca Zeffert | Hebrew University
Further information:
http://www.huji.ac.il

Further reports about: DNA DNA molecule DNA replication cancer development early stage

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>