Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hebrew U. scientists identify molecular basis for DNA breakage, a hallmark of cancer cells

08.07.2011
Scientists from the Hebrew University have identified the molecular basis for DNA breakage, a hallmark of cancer cells. The findings of this research will be published tomorrow in the prestigious journal Molecular Cell.

The DNA encodes the entire genetic information required for building the proteins of the cell. Hence, DNA breaks disrupt the proteins and lead to changes in the cell function. These changes can lead to defects in the control of cellular proliferation resulting in cancer development.

Using cutting edge technologies, researchers Prof. Batsheva Kerem and doctorate student Efrat Ozeri-Galai, of the Alexander Silverman Institute of Life Sciences in the Faculty of Science were able to characterize for the first time the DNA regions which are the most sensitive regions to breakage in early stages of cancer development. This is a breakthrough in our understanding of the effect of the DNA sequence and structure on its replication and stability.

"A hallmark of most human cancers is accumulation of damage in the DNA, which drives cancer development," says Prof. Kerem. "In the early stages of cancer development, the cells are forced to proliferate. In each cycle of proliferation the DNA is replicated to ensure that the daughter cells have a full DNA. However, in these early stages the conditions for DNA replication are perturbed, leading to DNA breaks, which occur specifically in regions defined as 'fragile sites'."

In this research Prof. Kerem and Ozeri-Galai used a sophisticated new methodology which enables the study of single DNA molecules, in order to study the basis for the specific sensitivity of the fragile sites. The findings are highly important since they shed new light on the DNA features and on the regulation of DNA replication along the first regions that break in cancer development.
The results show that along the fragile region there are sites that slow the DNA replication and even stop it. In order to allow completion of the DNA replication the cells activate already under normal conditions mechanisms that are usually used under stress. As a result, under conditions of replication stress, such as in early cancer development stages, the cell has no more tools to overcome the stress, and the DNA breaks.

The results of this study reveal the molecular mechanism that promotes cancer development. Currently, different studies focus on the very early stages of cancer development aiming to identify the events leading to cancer on the one hand and on their inhibition, on the other. The result of the current research identified for the first time DNA features that regulate DNA replication along the fragile sites, in early stages of cancer development. In the future, these findings could lead to the development of new therapeutic approaches to restrain and/or treat cancer.
For information, contact:
Rebecca Zeffert, Dept. of Media Relations, the Hebrew University, tel: 02-588-1641, cell: 054-882-0661
Orit Sulitzeanu, Hebrew University spokesperson, tel: 02-5882910, cell: 054-882-0016.

Internet site: http://media.huji.ac.il

Rebecca Zeffert | Hebrew University
Further information:
http://www.huji.ac.il

Further reports about: DNA DNA molecule DNA replication cancer development early stage

More articles from Life Sciences:

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>