Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Heat-Loving” Fungus Supplies the DNA to Rebuild a Central Structure of Nuclear Envelope

25.07.2011
Heidelberg scientists decipher genome of the thermophilic eukaryote Chaetomium thermophilum

By exploiting the DNA of a thermophilic fungus that grows optimally between 50 and 60 degrees Celsius Heidelberg scientists have reconstructed a central piece of the cell's nuclear envelope in the test-tube.

This structure is part of the nuclear pore complex, which mediates the exchange of material between the cell nucleus and its surrounding compartment, the cytoplasm. To achieve their goals, researchers from Heidelberg University and the European Molecular Biology Laboratory (EMBL) sequenced the genome of the thermophilic eukaryote Chaetomium thermophilum and identified all the proteins of the nuclear pore transport channel. This breakthrough enabled them to assemble a long sought-after central pillar of the nuclear pore. The findings reported by Prof. Dr. Ed Hurt and Dr. Peer Bork have been published in „Cell“ (22 July 2011).

A very prominent development in the evolution of a eukaryotic cell was the formation of a nuclear envelope around the genetic information, the chromosomes, which formed a barrier and hindered exchange of material between the nucleus and the cytoplasm. However, nuclear pore complexes have co-evolved as transport channels in the nuclear envelope to allow traffic between these two cellular compartments. Each nuclear pore complex is composed of about 30 different components called nucleoporins or Nups, which exist in many copies so that ca. 500 subunits build up this complex nano-machine.

Previously, the core structure of the nuclear pore complex was unknown, since it was difficult to reconstruct this assembly outside of the cell, due to the instability of isolated nuclear pore components. Thus, Prof. Hurt and his team sought to utilize thermostable nuclear pore building blocks from a thermophilic eukaryote to foster biochemical reconstitution. It is well known that proteins derived from heat-loving bacteria, which can still grow at temperatures above 100 degrees Celsius, are extremely robust. Notably, such exotic organisms also exist in the kingdom of eukaryote life. One example is Chaetomium thermophilum, a filamentous fungus, involved in the decomposition of plant material, a biological process generating heat as high as 70 degrees Celsius.

At Heidelberg University Biochemistry Center, Prof. Hurt and his team have deciphered the entire DNA sequence of the thermophilic fungus consisting of approximately 28 million DNA bases. Dr. Bork and his research group at the European Molecular Biology Laboratory have annotated the genome sequence and identified all the proteins in this organism, more than 7,000. Among them were the 30 Nups of the nuclear pore complex. By using these thermophilic Nups, Ed Hurt's team finally succeeded in reconstituting a central structure of the nuclear pore complex in the test-tube. Prof. Hurt and Dr. Bork are confident that their findings will foster the development of this eukaryotic thermophile as a model organism to study complicated eukaryotic molecular machines.

For more information, go to http://www.uni-heidelberg.de/zentral/bzh/hurt.

Original publication
Amlacher, S., Sarges, P., Flemming, D., van Noort, V., Kunze, R., Devos, D.P., Arumugam, M., Bork, P. & Hurt, E: Insight into Structure and Assembly of the Nuclear Pore Complex by Utilizing the Genome of a Eukaryotic Thermophile, Cell 146, 277-289, July 22, 2011, doi:10.1016/j.cell.2011.06.039
Contact
Prof. Dr. Ed Hurt
Heidelberg University Biochemistry Center
phone: +49 6221 544173
ed.hurt@bzh.uni-heidelberg.de
Communications and Marketing
Press Office, phone: +49 6221 542311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de/zentral/bzh/hurt

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>