Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Heat-Loving” Fungus Supplies the DNA to Rebuild a Central Structure of Nuclear Envelope

25.07.2011
Heidelberg scientists decipher genome of the thermophilic eukaryote Chaetomium thermophilum

By exploiting the DNA of a thermophilic fungus that grows optimally between 50 and 60 degrees Celsius Heidelberg scientists have reconstructed a central piece of the cell's nuclear envelope in the test-tube.

This structure is part of the nuclear pore complex, which mediates the exchange of material between the cell nucleus and its surrounding compartment, the cytoplasm. To achieve their goals, researchers from Heidelberg University and the European Molecular Biology Laboratory (EMBL) sequenced the genome of the thermophilic eukaryote Chaetomium thermophilum and identified all the proteins of the nuclear pore transport channel. This breakthrough enabled them to assemble a long sought-after central pillar of the nuclear pore. The findings reported by Prof. Dr. Ed Hurt and Dr. Peer Bork have been published in „Cell“ (22 July 2011).

A very prominent development in the evolution of a eukaryotic cell was the formation of a nuclear envelope around the genetic information, the chromosomes, which formed a barrier and hindered exchange of material between the nucleus and the cytoplasm. However, nuclear pore complexes have co-evolved as transport channels in the nuclear envelope to allow traffic between these two cellular compartments. Each nuclear pore complex is composed of about 30 different components called nucleoporins or Nups, which exist in many copies so that ca. 500 subunits build up this complex nano-machine.

Previously, the core structure of the nuclear pore complex was unknown, since it was difficult to reconstruct this assembly outside of the cell, due to the instability of isolated nuclear pore components. Thus, Prof. Hurt and his team sought to utilize thermostable nuclear pore building blocks from a thermophilic eukaryote to foster biochemical reconstitution. It is well known that proteins derived from heat-loving bacteria, which can still grow at temperatures above 100 degrees Celsius, are extremely robust. Notably, such exotic organisms also exist in the kingdom of eukaryote life. One example is Chaetomium thermophilum, a filamentous fungus, involved in the decomposition of plant material, a biological process generating heat as high as 70 degrees Celsius.

At Heidelberg University Biochemistry Center, Prof. Hurt and his team have deciphered the entire DNA sequence of the thermophilic fungus consisting of approximately 28 million DNA bases. Dr. Bork and his research group at the European Molecular Biology Laboratory have annotated the genome sequence and identified all the proteins in this organism, more than 7,000. Among them were the 30 Nups of the nuclear pore complex. By using these thermophilic Nups, Ed Hurt's team finally succeeded in reconstituting a central structure of the nuclear pore complex in the test-tube. Prof. Hurt and Dr. Bork are confident that their findings will foster the development of this eukaryotic thermophile as a model organism to study complicated eukaryotic molecular machines.

For more information, go to http://www.uni-heidelberg.de/zentral/bzh/hurt.

Original publication
Amlacher, S., Sarges, P., Flemming, D., van Noort, V., Kunze, R., Devos, D.P., Arumugam, M., Bork, P. & Hurt, E: Insight into Structure and Assembly of the Nuclear Pore Complex by Utilizing the Genome of a Eukaryotic Thermophile, Cell 146, 277-289, July 22, 2011, doi:10.1016/j.cell.2011.06.039
Contact
Prof. Dr. Ed Hurt
Heidelberg University Biochemistry Center
phone: +49 6221 544173
ed.hurt@bzh.uni-heidelberg.de
Communications and Marketing
Press Office, phone: +49 6221 542311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de/zentral/bzh/hurt

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>