Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heart scientists discover protein that may be 1 cause of heart failure

24.05.2011
Researchers at the Peter Munk Cardiac Centre discovered a protein switch which can trigger a cascade of events leading to heart failure, pointing to a new direction for drug development.

"Our research suggests that PINK1 is an important switch that sets off a cascade of events affecting heart cell metabolism,” says Dr. Phyllis Billia, principal author, clinician‑scientist and heart failure specialist at the Peter Munk Cardiac Centre. “This could be one of the inciting events in the development of heart failure.”

The findings, published today in Proceedings of the National Academy of Sciences, show that the absence of a certain protein, PINK1, causes heart cells to produce less energy. This lack of energy causes some heart cells to die, forcing the remaining cells to work harder to keep the heart going. In response to this stress, the heart muscle cells thicken, a condition known as hypertrophy.

Heart failure is the most common cause of hospitalization in North American adults, and over 50,000 are treated for advanced heart failure annually. Transplantation is the only long-term treatment for end-stage heart failure patients and the long wait times for a matching donor organ make it necessary to find other alternatives.

"Heart Failure remains a silent epidemic in North America, except for those who suffer from this devastating disease. Current therapies, while effective, only target the symptoms of heart failure," says Dr. Vivek Rao, co-author of the study and Surgical Director of the Heart Transplant Program at the Peter Munk Cardiac Centre. "The discovery of PINK-1's role in the development of heart failure may lead to novel treatment to prevent heart failure in those at risk. This discovery represents a novel and as yet, untapped mechanism to fight the battle against heart failure."

In the lab, researchers "knocked-out" or genetically removed the PINK1 gene in mice and studied their heart cells under the microscope. They found that although the hearts initially develop normally, they begin to fail after two months, suggesting that PINK1 isn't required for organ development; rather it is crucial for protecting against heart failure.

Until now, research into the PINK1 gene has focused on its links to early-onset Parkinson's disease and certain cancers including esophageal and endometrial. This is the first study to establish its connection to heart disease.

While more research is required to develop potential clinical treatments, this discovery represents a new way of thinking about the involvement of certain proteins in the progression of heart failure.

"We need to learn more about PINK1 and the other proteins it interacts with at the sub-cellular level," says Dr. Billia. "But if we've identified the inciting event that causes the chain of events leading to failure, research and drug development strategies should be focused in this new area of science."

Dr. Billia conducted this research in the cell metabolism laboratory of Dr. Tak Mak, Director of the Campbell Family Institute for Breast Cancer Research at Princess Margaret Hospital. Dr. Mak is internationally renowned for his important breakthroughs in immunology and our understanding of cancer at the molecular level.

The research published today was financially supported by grants from the Canadian Institute of Health Research.

About The Peter Munk Cardiac Centre

The Peter Munk Cardiac Centre is the premier cardiac centre in Canada. Since it opened in 1997, the Centre has saved and improved the lives of cardiac and vascular patients from around the world. Each year, approximately 17,000 patients receive innovative and compassionate care from multidisciplinary teams in the Peter Munk Cardiac Centre, and the Centre trains more cardiologists, cardiovascular surgeons and vascular surgeons than any hospital in Canada. The Centre is based at the Toronto General Hospital and the Toronto Western Hospital - members of University Health Network, which also includes Princess Margaret Hospital. All three sites are research hospitals affiliated with the University of Toronto. For more information please visit www.petermunkcardiaccentre.ca

Nicole Bodnar | EurekAlert!
Further information:
http://www.uhn.on.ca

Further reports about: Cardiac Medicine Princess health services heart cells heart failure

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>