Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heart scientists discover protein that may be 1 cause of heart failure

24.05.2011
Researchers at the Peter Munk Cardiac Centre discovered a protein switch which can trigger a cascade of events leading to heart failure, pointing to a new direction for drug development.

"Our research suggests that PINK1 is an important switch that sets off a cascade of events affecting heart cell metabolism,” says Dr. Phyllis Billia, principal author, clinician‑scientist and heart failure specialist at the Peter Munk Cardiac Centre. “This could be one of the inciting events in the development of heart failure.”

The findings, published today in Proceedings of the National Academy of Sciences, show that the absence of a certain protein, PINK1, causes heart cells to produce less energy. This lack of energy causes some heart cells to die, forcing the remaining cells to work harder to keep the heart going. In response to this stress, the heart muscle cells thicken, a condition known as hypertrophy.

Heart failure is the most common cause of hospitalization in North American adults, and over 50,000 are treated for advanced heart failure annually. Transplantation is the only long-term treatment for end-stage heart failure patients and the long wait times for a matching donor organ make it necessary to find other alternatives.

"Heart Failure remains a silent epidemic in North America, except for those who suffer from this devastating disease. Current therapies, while effective, only target the symptoms of heart failure," says Dr. Vivek Rao, co-author of the study and Surgical Director of the Heart Transplant Program at the Peter Munk Cardiac Centre. "The discovery of PINK-1's role in the development of heart failure may lead to novel treatment to prevent heart failure in those at risk. This discovery represents a novel and as yet, untapped mechanism to fight the battle against heart failure."

In the lab, researchers "knocked-out" or genetically removed the PINK1 gene in mice and studied their heart cells under the microscope. They found that although the hearts initially develop normally, they begin to fail after two months, suggesting that PINK1 isn't required for organ development; rather it is crucial for protecting against heart failure.

Until now, research into the PINK1 gene has focused on its links to early-onset Parkinson's disease and certain cancers including esophageal and endometrial. This is the first study to establish its connection to heart disease.

While more research is required to develop potential clinical treatments, this discovery represents a new way of thinking about the involvement of certain proteins in the progression of heart failure.

"We need to learn more about PINK1 and the other proteins it interacts with at the sub-cellular level," says Dr. Billia. "But if we've identified the inciting event that causes the chain of events leading to failure, research and drug development strategies should be focused in this new area of science."

Dr. Billia conducted this research in the cell metabolism laboratory of Dr. Tak Mak, Director of the Campbell Family Institute for Breast Cancer Research at Princess Margaret Hospital. Dr. Mak is internationally renowned for his important breakthroughs in immunology and our understanding of cancer at the molecular level.

The research published today was financially supported by grants from the Canadian Institute of Health Research.

About The Peter Munk Cardiac Centre

The Peter Munk Cardiac Centre is the premier cardiac centre in Canada. Since it opened in 1997, the Centre has saved and improved the lives of cardiac and vascular patients from around the world. Each year, approximately 17,000 patients receive innovative and compassionate care from multidisciplinary teams in the Peter Munk Cardiac Centre, and the Centre trains more cardiologists, cardiovascular surgeons and vascular surgeons than any hospital in Canada. The Centre is based at the Toronto General Hospital and the Toronto Western Hospital - members of University Health Network, which also includes Princess Margaret Hospital. All three sites are research hospitals affiliated with the University of Toronto. For more information please visit www.petermunkcardiaccentre.ca

Nicole Bodnar | EurekAlert!
Further information:
http://www.uhn.on.ca

Further reports about: Cardiac Medicine Princess health services heart cells heart failure

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>