Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heart saves muscle

27.05.2009
New study shows heart muscle protein can replace its missing skeletal muscle counterpart to give mice with myopathy a long and active life

A heart muscle protein can replace its missing skeletal muscle counterpart to give mice with myopathy a long and active life, show Nowak et al. The findings will be published online on Monday, May 25, 2009 (www.jcb.org) and will appear in the June 1, 2009 print issue of the Journal of Cell Biology.

The contraction machinery protein, actin, exists in different forms in the adult heart and skeletal muscles. The heart form, ACTC, is also the dominant form in skeletal muscle of the fetus. But during development, the skeletal form, ACTA1, increases in production and by birth has taken over. It is not clear why the switch occurs, or why it doesn't occur in the heart, but it happens in every higher vertebrate and, for that reason, has been considered vitally important.

Mutations to the ACTA1 gene cause a rare but serious myopathy. Most patients die within the first year of life and some are born almost completely paralyzed. Mice lacking ACTA1 die nine days after birth. Nowak et al. wondered if ACTC could compensate for a lack of ACTA1. The two proteins differ only slightly but, like the developmental switch in production, this difference is conserved across species. Many researchers therefore assumed such compensation would never work.

But it did. Nowak and colleagues crossed Acta1 mutant mice with transgenic mice that express human ACTC at high levels in skeletal muscle cells. The resulting mice didn't die at nine days. In fact, almost all of them (93.5%) survived more than three months, and some more than two years. The mice's locomotor performance was comparable with wild-type, as was their overall muscle strength (though individual muscle fibers were slightly weaker), and their endurance was actually higher—they ran faster and for longer.

This begs the question, Why do we even have ACTA1? Besides pondering that, Nowak and colleagues are also working out how to boost endogenous ACTC as a possible therapy for ACTA1-lacking patients.

About the Journal of Cell Biology

Founded in 1955, the Journal of Cell Biology (JCB) is published by the Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists in conjunction with our in-house scientific editors. JCB content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works and third parties may reuse the content for non-commercial purposes under a creative commons license. For more information, please visit www.jcb.org or visit the JCB press release archive at http://www.eurekalert.org/jrnls/rupress.

Nowak, K.J., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200812132

Rita Sullivan | EurekAlert!
Further information:
http://www.rupress.org

Further reports about: ACTA1 ACTC Heart JCB cell biology cell death muscle fibers skeletal muscle synthetic biology

More articles from Life Sciences:

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

nachricht Funding of Collaborative Research Center developing nanomaterials for cancer immunotherapy extended
28.06.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

New Headlamp Dimension: Fully Adaptive Light Distribution in Real Time

29.06.2017 | Automotive Engineering

Turning the Climate Tide by 2020

29.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>