Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heart Protein Regulates Blood Vessel Maintenance

13.05.2009
In a study led by Akiko Hata, PhD, of Tufts University School of Medicine, researchers have shown that a protein expressed in the heart, FHL2, inhibits the genes necessary for the quiescence of vascular smooth muscle cells (vSMCs), which line blood vessels.

Vascular smooth muscle cells undergo a process in diseases such as atherosclerosis or normal tissue damage caused by balloon angioplasty where they transition between a resting and proliferative state. The ability to transition between the two states is necessary for the normal development of blood vessels, regulating blood pressure, and repairing vessels that suffer from injury.

“By understanding the pathways that modulate vSMCs, we are closer to being able to develop reagents to ameliorate abnormal function of blood vessels,” says Hata, associate professor at Tufts University School of Medicine and a member of the biochemistry program faculty at the Sackler School of Graduate Biomedical Sciences at Tufts.

The researchers have previously shown that BMPs (Bone Morphogenetic Proteins) play a role in the maintenance of smooth muscle cells in the pulmonary artery. In this study, the research demonstrates that FHL2 (Four-and-a-Half LIM Domain Protein 2) inhibits activation of genes that are involved in contraction of smooth muscle cells by at least one of the BMPs.

“We also found that FHL2 is important in the regulation of vasomotor tone, or the contraction and relaxation of muscles in the blood vessel. This is important because dysfunction in vasomotor tone is thought to cause high blood pressure. Our study demonstrates that FHL2 is essential in modulating the physical state of vSMCs, which is essential in regulating vascular motor function,” says Hata.

First author Nicole Neuman is a graduate student in the Sackler School of Graduate Biomedical Sciences at Tufts and is a member of the Molecular Signaling Laboratory at the Molecular Cardiology Research Institute (MCRI) at Tufts Medical Center.

Senior author Akiko Hata, PhD, is also the director of the Molecular Signaling Laboratory at the MCRI at Tufts Medical Center.

This study was funded by the National Heart, Lung and Blood Institute at the National Institutes of Health.

Neuman NA, Ma S, Schnitzler GR, Zhu Y, Lagna, G, and Hata A. The Journal of Biological Chemistry. 2009. (May 8); 284 (19): 13202-13212. “The Four-and-a-half LIM Domain Protein 2 Regulates Vascular Smooth Muscle Phenotype and Vascular Tone.” Published online March 5, 2009, doi: 10.1074/jbc.M900282200

About Tufts University School of Medicine
Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts University are international leaders in innovative medical education and advanced research. The School of Medicine and the Sackler School are renowned for excellence in education in general medicine, special combined degree programs in business, health management, public health, bioengineering and international relations, as well as basic and clinical research at the cellular and molecular level. Ranked among the top in the nation, the School of Medicine is affiliated with six major teaching hospitals and more than 30 health care facilities. The Sackler School undertakes research that is consistently rated among the highest in the nation for its impact on the advancement of medical science.
About Tufts University
Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Siobhan Gallagher | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>