Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heart Protein Regulates Blood Vessel Maintenance

13.05.2009
In a study led by Akiko Hata, PhD, of Tufts University School of Medicine, researchers have shown that a protein expressed in the heart, FHL2, inhibits the genes necessary for the quiescence of vascular smooth muscle cells (vSMCs), which line blood vessels.

Vascular smooth muscle cells undergo a process in diseases such as atherosclerosis or normal tissue damage caused by balloon angioplasty where they transition between a resting and proliferative state. The ability to transition between the two states is necessary for the normal development of blood vessels, regulating blood pressure, and repairing vessels that suffer from injury.

“By understanding the pathways that modulate vSMCs, we are closer to being able to develop reagents to ameliorate abnormal function of blood vessels,” says Hata, associate professor at Tufts University School of Medicine and a member of the biochemistry program faculty at the Sackler School of Graduate Biomedical Sciences at Tufts.

The researchers have previously shown that BMPs (Bone Morphogenetic Proteins) play a role in the maintenance of smooth muscle cells in the pulmonary artery. In this study, the research demonstrates that FHL2 (Four-and-a-Half LIM Domain Protein 2) inhibits activation of genes that are involved in contraction of smooth muscle cells by at least one of the BMPs.

“We also found that FHL2 is important in the regulation of vasomotor tone, or the contraction and relaxation of muscles in the blood vessel. This is important because dysfunction in vasomotor tone is thought to cause high blood pressure. Our study demonstrates that FHL2 is essential in modulating the physical state of vSMCs, which is essential in regulating vascular motor function,” says Hata.

First author Nicole Neuman is a graduate student in the Sackler School of Graduate Biomedical Sciences at Tufts and is a member of the Molecular Signaling Laboratory at the Molecular Cardiology Research Institute (MCRI) at Tufts Medical Center.

Senior author Akiko Hata, PhD, is also the director of the Molecular Signaling Laboratory at the MCRI at Tufts Medical Center.

This study was funded by the National Heart, Lung and Blood Institute at the National Institutes of Health.

Neuman NA, Ma S, Schnitzler GR, Zhu Y, Lagna, G, and Hata A. The Journal of Biological Chemistry. 2009. (May 8); 284 (19): 13202-13212. “The Four-and-a-half LIM Domain Protein 2 Regulates Vascular Smooth Muscle Phenotype and Vascular Tone.” Published online March 5, 2009, doi: 10.1074/jbc.M900282200

About Tufts University School of Medicine
Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts University are international leaders in innovative medical education and advanced research. The School of Medicine and the Sackler School are renowned for excellence in education in general medicine, special combined degree programs in business, health management, public health, bioengineering and international relations, as well as basic and clinical research at the cellular and molecular level. Ranked among the top in the nation, the School of Medicine is affiliated with six major teaching hospitals and more than 30 health care facilities. The Sackler School undertakes research that is consistently rated among the highest in the nation for its impact on the advancement of medical science.
About Tufts University
Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Siobhan Gallagher | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>