Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heart Protein Regulates Blood Vessel Maintenance

13.05.2009
In a study led by Akiko Hata, PhD, of Tufts University School of Medicine, researchers have shown that a protein expressed in the heart, FHL2, inhibits the genes necessary for the quiescence of vascular smooth muscle cells (vSMCs), which line blood vessels.

Vascular smooth muscle cells undergo a process in diseases such as atherosclerosis or normal tissue damage caused by balloon angioplasty where they transition between a resting and proliferative state. The ability to transition between the two states is necessary for the normal development of blood vessels, regulating blood pressure, and repairing vessels that suffer from injury.

“By understanding the pathways that modulate vSMCs, we are closer to being able to develop reagents to ameliorate abnormal function of blood vessels,” says Hata, associate professor at Tufts University School of Medicine and a member of the biochemistry program faculty at the Sackler School of Graduate Biomedical Sciences at Tufts.

The researchers have previously shown that BMPs (Bone Morphogenetic Proteins) play a role in the maintenance of smooth muscle cells in the pulmonary artery. In this study, the research demonstrates that FHL2 (Four-and-a-Half LIM Domain Protein 2) inhibits activation of genes that are involved in contraction of smooth muscle cells by at least one of the BMPs.

“We also found that FHL2 is important in the regulation of vasomotor tone, or the contraction and relaxation of muscles in the blood vessel. This is important because dysfunction in vasomotor tone is thought to cause high blood pressure. Our study demonstrates that FHL2 is essential in modulating the physical state of vSMCs, which is essential in regulating vascular motor function,” says Hata.

First author Nicole Neuman is a graduate student in the Sackler School of Graduate Biomedical Sciences at Tufts and is a member of the Molecular Signaling Laboratory at the Molecular Cardiology Research Institute (MCRI) at Tufts Medical Center.

Senior author Akiko Hata, PhD, is also the director of the Molecular Signaling Laboratory at the MCRI at Tufts Medical Center.

This study was funded by the National Heart, Lung and Blood Institute at the National Institutes of Health.

Neuman NA, Ma S, Schnitzler GR, Zhu Y, Lagna, G, and Hata A. The Journal of Biological Chemistry. 2009. (May 8); 284 (19): 13202-13212. “The Four-and-a-half LIM Domain Protein 2 Regulates Vascular Smooth Muscle Phenotype and Vascular Tone.” Published online March 5, 2009, doi: 10.1074/jbc.M900282200

About Tufts University School of Medicine
Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts University are international leaders in innovative medical education and advanced research. The School of Medicine and the Sackler School are renowned for excellence in education in general medicine, special combined degree programs in business, health management, public health, bioengineering and international relations, as well as basic and clinical research at the cellular and molecular level. Ranked among the top in the nation, the School of Medicine is affiliated with six major teaching hospitals and more than 30 health care facilities. The Sackler School undertakes research that is consistently rated among the highest in the nation for its impact on the advancement of medical science.
About Tufts University
Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Siobhan Gallagher | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

nachricht Inactivate vaccines faster and more effectively using electron beams
23.03.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

New study maps space dust in 3-D

23.03.2017 | Physics and Astronomy

Tracing aromatic molecules in the early universe

23.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>