Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Why the heart beats on the left

In all vertebrates - and thus also in the human - the heart usually beats on the left side of the body. Why this is the case has not been understood in every detail yet. Developmental biologist from Würzburg now made a crucial step towards the solution of this riddle.

When a fertilized ovum is to grow into a viable organism during its embryonic development, one of the things the cells need to know is where left and right are, so that the organs eventually wind up in the right spot in the right shape.

Thus the heart of all vertebrates, for instance, develops from an initially tubular shape that already shows a flexion towards the right side of the body shortly after its formation. This initial asymmetry is the reason why the tip of the heart - after a number of further rotations - in the end points towards the left side of the body.

How the body distinguishes right from left

How does the organism manage distinguish right from left? And which processes are responsible, for example, for the fact that heart usually beats on the left? The Würzburg-based developmental biologist Professor Thomas Brand and his colleague Dr. Jan Schlüter pursued this question. The current online issue of Proceedings of the National Academy of Sciences PNAS reports their result. In chicken embryos, the two researchers were able to characterize a signal pathway that plays a role in the asymmetrical development of the heart.

"So far the leading opinion was that a certain signal pathway is responsible for the left-sided development of organs that needs to be inhibited on the right side so that an asymmetry can develop", says Thomas Brand. As the two developmental biologists have shown now, this concept is not accurate: "With the chicken embryo, we could prove that an autonomous signal pathway also exists on the right side", states Brand.

Asymmetry is the rule, not the exception

Asymmetry in the body: Is it not the exception from the rule that applies to no more than the heart, liver, and spleen, while the majority is virtually built as a mirror-image? "Not at all", says Brand. In principle, the entire body is built asymmetrically; to make it appear symmetrical nevertheless, numerous signal cascades have to become active during the embryonic development.

In their work, Brand and Schlüter intensively examined mechanisms that play a role in the right-left characteristics. One of them is the asymmetrical production of ionic pumps. "This leads to an uneven distribution of electrical charge on the right and left side of the body that seem to show the cells the way", explains Brand. In the developmental biologists' experiments, blocking these ionic pumps led to a random distribution of the cells in the heart that are the preliminary stage of coronary blood vessels: At times they were located, as is usual, on the right side; at times they ended up on the left. In other cases they settled on both sides; occasionally they were missing completely.

Dead cells show the way

"Thus this effect also plays an important role for the lateral orientation of the organs", says Thomas Brand. But to him, this is not sufficient as the sole explanation for the 'left-sided heart'. The same applies to another mechanism: the programmed cell death. "In this case, the organism ensures that cells die along the midline of the embryo to mark the border between the left and the right side of the body", explains Brand. If the scientists prevented this cell death, the cells would settle in the heart, also according to the random principle.

FGF8: This is the name of the signal factor that is responsible for the right-sided development of the chicken heart according to the findings of Brand and Schlüter. Thus, their conclusion is: "The models for the right-left development have to be expanded." The fact that other vertebrates, such as the South African clawed frog or the river lamprey, build hearts in a similar manner speaks for the concept that this aspect of the right-left asymmetry is evolutionarily ancient.

Further research necessary

If this is also relevant for mammals, and thus for humans, is not clear. After all: "FGF8 mutations cause heart deformities in mice. This signal pathway might be significant for the right-directed heart flexion in the very early stage of the development, says Thomas Brand. The focus of his further research will thus be to identify the target genes of this signal pathway to better understand this aspect of the heart development on a molecular level.

Jan Schlueter and Thomas Brand (2009). A right-sided pathway involving FGF8/Snai1 controls asymmetric development of the proepicardium in the chick embryo. Proc Natl Acad Sci U. S. A. Early Edition (EE) the week of April 6, 2009.

Contact: Prof. Dr. Thomas Brand, phone (0931) 31-84259, e-mail:

Gunnar Bartsch | idw
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>