Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Healing Bullets Fly Through Tissue

28.06.2012
Ultrasound vaporization of microdroplets as propulsion for therapeutic micromachines

Microscopically small submarines that can swim through our blood to clear out clogged arteries or destroy malignant tumors. This concept may sound utopian, but it isn’t. Various micro- and nanomachines have in fact already been developed. In the journal Angewandte Chemie, American researchers have now introduced a new type of machine that finally has enough propulsive power to penetrate tissue and overcome cellular barriers.

Previous approaches suffered from the fact that the tiny machines didn’t have enough power or lacked biocompatibility. A team led by Sadik Esener and Joseph Wang at the University of California, San Diego has now overcome this challenge. Their new type of micromachine owes its amazing power to ultrasound, which explosively vaporizes tiny drops of liquid, accelerating the machines like bullets.

These novel “microbullets” are conical, pointed, gold-coated tubes with dimensions on the micrometer scale. Their interior is additionally coated with a special biocompatible substance that is capable of binding tiny drops of emulsion through electrostatic interactions. The emulsion used is based on biocompatible perfluorocarbon compounds. An additional magnetic component (nickel) ensures that an external magnetic field can be used to direct the tube to the desired location and orientation.

When ultrasound is then directed at this location, the drops are explosively vaporized. Like bullets in a gun barrel, the tubes are pushed forward by the microexplosion. Depending on the dimensions of the tubes, the size and composition of the emulsion drops, and the strength of the ultrasound signal, speeds around 6.3 m/s can be attained. This is about one hundred times faster than previously reported micromachines, and is enough to shoot the tiny bullets into tissues. Because the fuel is “on board”, propulsion is independent of the environment.

There are a wide variety of possible applications: microbullets could be used to drive drugs deep into diseased tissue, shoot genes into cell nuclei for gene therapy, scrape deposits off of arterial walls, shoot antitumor drugs directly into a tumor, or even carry out micro-operations.

A first area of application may be local stimulation of the immune system for fighting bladder cancer. In conventional treatment, a weakened form of the bacterium that causes tuberculosis is introduced to the bladder, causing a superficial bladder infection. This activates the immune system, which attacks the tumor cells as well as the tuberculosis bacteria. Instead of this approach, the microbullets could be shot into the bladder wall to initiate the desired inflammatory reaction – without the risks and side effects associated with the bacteria.

About the Author
Dr. Joseph Wang is Distinguished Professor of Nanoengineering at UCSD, focusing on nanomachines and nanobiotechnology.
Author: Joseph Wang, University of California San Diego, La Jolla (USA), http://ne.ucsd.edu/~joewang/
Title: Acoustic Droplet Vaporization and Propulsion of Perfluorocarbon-Loaded Microbullets for Targeted Tissue Penetration and Deformation

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201201902

Joseph Wang | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>