Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Healing Bullets Fly Through Tissue

28.06.2012
Ultrasound vaporization of microdroplets as propulsion for therapeutic micromachines

Microscopically small submarines that can swim through our blood to clear out clogged arteries or destroy malignant tumors. This concept may sound utopian, but it isn’t. Various micro- and nanomachines have in fact already been developed. In the journal Angewandte Chemie, American researchers have now introduced a new type of machine that finally has enough propulsive power to penetrate tissue and overcome cellular barriers.

Previous approaches suffered from the fact that the tiny machines didn’t have enough power or lacked biocompatibility. A team led by Sadik Esener and Joseph Wang at the University of California, San Diego has now overcome this challenge. Their new type of micromachine owes its amazing power to ultrasound, which explosively vaporizes tiny drops of liquid, accelerating the machines like bullets.

These novel “microbullets” are conical, pointed, gold-coated tubes with dimensions on the micrometer scale. Their interior is additionally coated with a special biocompatible substance that is capable of binding tiny drops of emulsion through electrostatic interactions. The emulsion used is based on biocompatible perfluorocarbon compounds. An additional magnetic component (nickel) ensures that an external magnetic field can be used to direct the tube to the desired location and orientation.

When ultrasound is then directed at this location, the drops are explosively vaporized. Like bullets in a gun barrel, the tubes are pushed forward by the microexplosion. Depending on the dimensions of the tubes, the size and composition of the emulsion drops, and the strength of the ultrasound signal, speeds around 6.3 m/s can be attained. This is about one hundred times faster than previously reported micromachines, and is enough to shoot the tiny bullets into tissues. Because the fuel is “on board”, propulsion is independent of the environment.

There are a wide variety of possible applications: microbullets could be used to drive drugs deep into diseased tissue, shoot genes into cell nuclei for gene therapy, scrape deposits off of arterial walls, shoot antitumor drugs directly into a tumor, or even carry out micro-operations.

A first area of application may be local stimulation of the immune system for fighting bladder cancer. In conventional treatment, a weakened form of the bacterium that causes tuberculosis is introduced to the bladder, causing a superficial bladder infection. This activates the immune system, which attacks the tumor cells as well as the tuberculosis bacteria. Instead of this approach, the microbullets could be shot into the bladder wall to initiate the desired inflammatory reaction – without the risks and side effects associated with the bacteria.

About the Author
Dr. Joseph Wang is Distinguished Professor of Nanoengineering at UCSD, focusing on nanomachines and nanobiotechnology.
Author: Joseph Wang, University of California San Diego, La Jolla (USA), http://ne.ucsd.edu/~joewang/
Title: Acoustic Droplet Vaporization and Propulsion of Perfluorocarbon-Loaded Microbullets for Targeted Tissue Penetration and Deformation

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201201902

Joseph Wang | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Historical rainfall levels are significant in carbon emissions from soil
30.05.2017 | University of Texas at Austin

nachricht 3D printer inks from the woods
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>