Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Healing Bullets Fly Through Tissue

28.06.2012
Ultrasound vaporization of microdroplets as propulsion for therapeutic micromachines

Microscopically small submarines that can swim through our blood to clear out clogged arteries or destroy malignant tumors. This concept may sound utopian, but it isn’t. Various micro- and nanomachines have in fact already been developed. In the journal Angewandte Chemie, American researchers have now introduced a new type of machine that finally has enough propulsive power to penetrate tissue and overcome cellular barriers.

Previous approaches suffered from the fact that the tiny machines didn’t have enough power or lacked biocompatibility. A team led by Sadik Esener and Joseph Wang at the University of California, San Diego has now overcome this challenge. Their new type of micromachine owes its amazing power to ultrasound, which explosively vaporizes tiny drops of liquid, accelerating the machines like bullets.

These novel “microbullets” are conical, pointed, gold-coated tubes with dimensions on the micrometer scale. Their interior is additionally coated with a special biocompatible substance that is capable of binding tiny drops of emulsion through electrostatic interactions. The emulsion used is based on biocompatible perfluorocarbon compounds. An additional magnetic component (nickel) ensures that an external magnetic field can be used to direct the tube to the desired location and orientation.

When ultrasound is then directed at this location, the drops are explosively vaporized. Like bullets in a gun barrel, the tubes are pushed forward by the microexplosion. Depending on the dimensions of the tubes, the size and composition of the emulsion drops, and the strength of the ultrasound signal, speeds around 6.3 m/s can be attained. This is about one hundred times faster than previously reported micromachines, and is enough to shoot the tiny bullets into tissues. Because the fuel is “on board”, propulsion is independent of the environment.

There are a wide variety of possible applications: microbullets could be used to drive drugs deep into diseased tissue, shoot genes into cell nuclei for gene therapy, scrape deposits off of arterial walls, shoot antitumor drugs directly into a tumor, or even carry out micro-operations.

A first area of application may be local stimulation of the immune system for fighting bladder cancer. In conventional treatment, a weakened form of the bacterium that causes tuberculosis is introduced to the bladder, causing a superficial bladder infection. This activates the immune system, which attacks the tumor cells as well as the tuberculosis bacteria. Instead of this approach, the microbullets could be shot into the bladder wall to initiate the desired inflammatory reaction – without the risks and side effects associated with the bacteria.

About the Author
Dr. Joseph Wang is Distinguished Professor of Nanoengineering at UCSD, focusing on nanomachines and nanobiotechnology.
Author: Joseph Wang, University of California San Diego, La Jolla (USA), http://ne.ucsd.edu/~joewang/
Title: Acoustic Droplet Vaporization and Propulsion of Perfluorocarbon-Loaded Microbullets for Targeted Tissue Penetration and Deformation

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201201902

Joseph Wang | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>