Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Heads or Tails: Cells' Electricity Decides

For the first time, scientists have shown that specific changes in cell membrane voltage and ion flow are a key determinant in whether an organism regenerates a head or a tail. Biologists at Tufts University's School of Arts and Sciences were able to control the shape of tissue regenerated by amputated planarian (flatworm) segments by manipulating the natural electrical signals that determine head-tail identity in the worms.

The research, led by Tufts Professor of Biology Michael Levin, Ph.D., is reported in the Jan. 28, 2011, issue of the journal Chemistry & Biology, appearing online Jan. 27.

"This study has uncovered a previously unknown role for bioelectric signals in patterning tissues in flatworms, an important model system for understanding the basic mechanisms of regeneration," said Susan Haynes, Ph.D., who manages Levin's and other developmental biology grants at the National Institutes of Health. "The findings suggest that control of ion channels by pharmacological agents could be a useful approach in developing regenerative therapies for tissues and organs lost to injury or disease."

The Tufts study provides critical insights into how an injured organism determines that it has deviated from normal patterning and how it then restores the missing parts--providing precisely the amount and type of tissue necessary and avoiding overgrowth or cancer.

"Our and others’ previous research indicated that it is possible to trigger the process of regeneration by bioelectric means, but no one had yet shown that it is possible to actually determine what part regenerates by targeted changes in the function of ion channel and pump proteins that control transmembrane voltage potential," said Levin. "Once we understand this more fully, we hope to be able to induce human bodies to do the same."

Co-authors with Levin on the paper were three members of his laboratory: Wendy Scott Beane, Ph.D., post doctoral associate; Junji Morokuma, research associate; and Dany Spencer Adams, Ph.D., research associate professor.

Chemical Genetics
Importantly, the work demonstrates a technique for manipulating membrane voltage during regeneration that does not rely on gene therapy.

Such a drug-based "chemical genetics" approach avoids the need to regulate each signaling pathway and epigenetic mechanism individually and circumvents the difficulties of transgenes.

Flatworms have a complex central nervous system, a true brain and a well-defined adult stem cell population. They share a significant number of genes with vertebrates. The adult worms have remarkable powers of regeneration: any piece that is cut off will regrow, including the brain.

Two Heads Better than One?
The Tufts biologists had previously identified a possible role for the enzyme H,K-ATPase and cell-cell junctions in planarian regeneration. In the recent Chemistry and Biology paper, they report that H,K,-ATPase mediates ion transport to depolarize wounded tissue and enable planaria to regenerate heads.

Further, when the biologists used ivermectin independently of H,K,-ATPase to effect depolarization, the planarian fragments also regenerated new heads. This was true even for posterior wounds, which would normally regrow tails. The induction of the same tissue pattern by completely different means that have in common only their control of membrane voltage underscores the crucial nature of voltage gradient as a physiological parameter controlling regeneration.

The biologists also reported that treatment of wounded tissue with the H,K-ATPase inhibitor SCH 28080 for 72 hours hyperpolarized the tissue and stopped head regeneration.

The researchers concluded that pharmacologically induced changes in membrane voltage are enough to trigger an entire morphogenetic program -- head regeneration -- downstream of stem cell proliferation, and serve as a master regulator of a complex patterning cascade.

Unique Research Focus
Developmental biologists commonly study biochemical signals that cells exchange during the orchestration of the tissue regeneration process. The Levin lab is unique in focusing on an important and different kind of signal: a bioelectrical language that integrates the new cells' activity with the host to enable them to establish pattern during embryogenesis, fill in missing pieces during regeneration, and avoid the shape derangement observed in cancer throughout the lifespan.

Research funding was provided by the National Institutes of Health and the National Highway Traffic Safety Administration.

"A Chemical Genetics Approach Reveals H,K-ATPase-Mediated Membrane Voltage is Required for Planarian Head Regeneration," Chemistry & Biology, Jan. 28, 2011, Wendy Scott Beane; Junji Morokuma; Dany Spencer Adams; Michael Levin.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university is widely encouraged.

Kim Thurler | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection

24.10.2016 | Health and Medicine

Microbe hunters discover long-sought-after iron-munching microbe

24.10.2016 | Life Sciences

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

More VideoLinks >>>