Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heads or tails?

17.05.2011
Worm with abundant ability to regenerate relies on ancient gene to make decisions

Most people don't think worms are cool. But the tiny flatworm that Northwestern University scientist Christian Petersen studies can do something very cool indeed: it can regenerate itself from nearly every imaginable injury, including decapitation. When cut in half, it becomes two worms.

This amazing ability of the planarian flatworm to regenerate its entire body from a small wedge of tissue has fascinated scientists since the late 1800s. The worms can regrow any missing cell or tissue -- muscle, neurons, epidermis, eyes, even a new brain.

Now Petersen and colleague Peter Reddien of the Massachusetts Institute of Technology (MIT) have discovered that an ancient and seldom-studied gene is critical for regeneration in these animals. The findings may have important ramifications for tissue regeneration and repair in humans.

The gene, called notum, plays a key role in the regeneration decision-making process. Protein from this gene determines whether a head or tail will regrow at appropriate amputation sites, the researchers found.

"These worms are superstars in regeneration, and we want to learn how they restore missing body parts," said Petersen, an assistant professor of molecular biosciences in Northwestern's Weinberg College of Arts and Sciences. "We anticipate that understanding the details of how regeneration occurs in nature will ultimately have a broad impact on the repair of human tissue."

The study is published in the May 13 issue of the journal Science. Petersen, a former postdoctoral fellow in Reddien's lab, is the first author. Reddien, associate professor of biology at MIT and the Whitehead Institute for Biomedical Research, is the other author.

The ability of planarians to regenerate any missing tissues after injury depends on a pool of adult stem cells. Researchers hope that by studying this worm they will understand the molecular processes that naturally allow stem cell-mediated tissue repair in higher animals.

In their paper, Petersen and Reddien show that the gene notum is critical for head regeneration in planarians. Inactivation of notum caused animals to regenerate a tail instead of a head, creating two-tailed animals.

"Injuries can alter tissues in many different ways, so regenerating animals must have robust systems that specify restoration of appropriate structures," Petersen said. "Our results suggest that the animals 'decide' what needs to be regenerated, in part, by using cues that indicate axis direction with respect to the wound."

Planarians are 2 to 20 millimeters in size and have a complex anatomy with around a million cells. They live in freshwater ponds and streams around the world. The worm's genome has been sequenced, and its basic biology is well-characterized, making planarians popular with scientists.

Petersen and Reddien also found that notum controls a widely used biochemical circuit, Wnt signaling, in order to promote proper regeneration. This ancient signaling circuit operates in all animals and controls many processes in development and disease, including tissue repair and cancer progression.

In the paper, the authors describe how the gene notum acts at head-facing wounds as a dimmer switch to dampen the Wnt pathway and promote head regeneration. When the head or tail of a planarian is cut off, Wnt is activated. This Wnt activity turns on notum, but only at head-facing wounds. In a feedback loop, notum then turns Wnt down low enough that it can no longer prevent a head from forming. In tail-facing wounds, however, notum is not activated highly, a condition that promotes tail regrowth. (It takes the worm about a week to regrow a head or tail.)

The researchers are intrigued by this new role for notum. Like the Wnt signaling pathway, notum is highly conserved throughout species, from sea anenomes to fruit flies to humans, but little is known about its roles in biology. Because both notum and the Wnt signaling pathway are so evolutionarily ancient, their interaction in planarians may indicate a relationship that is important in other animals as well.

"We anticipate that this phenomenon of feedback inhibition regulating the levels of Wnt activity will be seen broadly in other biological contexts," Reddien said. "Wnt signaling is so broadly studied and important in biology, including for tissue repair and regeneration. Notum isn't really on the map for the broad roles Wnt signaling plays in tissue repair, but this work demonstrates the central role it can play."

The name of the paper is "Polarized Activation of Notum at Wounds Inhibits Wnt Signaling to Promote Planarian Head Regeneration."

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>