Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Head in a Cage

11.06.2013
Fatty acid composition of diacylglycerols determines local signaling patterns

In the human body, lipids do not only serve as energy stores and structural elements, but they are also important signaling molecules. Disruptions of lipid signal transmission seem to be involved in diseases such as atherosclerosis and diabetes, as well as inflammation and pain.



In the journal Angewandte Chemie, researchers from Heidelberg have now reported on photoactivatable lipids that can be used to manipulate signaling processes in cells with both spatial and time resolution.

To communicate with each other and react to external stimuli, cells need signal-transmission mechanisms. The signal cascades involved are very complex and vary greatly from one cell type to the next. For example, one type of cascade involves the activation of phospholipase C, which then splits a membrane building block into inositol trisphosphate and the lipid diacylglycerol (DAG). These in turn serve as secondary messengers within the cell.

DAG anchors the enzyme protein kinase C (PKC) to the cell membrane and activates it. In addition, DAG can open certain calcium channels in the cell membrane, allowing calcium ions to flow into the cell. This stimulates further steps of the network and hence eventually trigger physiological responses, such as changes in gene expression.

Lipids as secondary messengers have received relatively little attention from researchers. Lipids consist of a head group and a “tail” made of a hydrocarbon chain that can vary greatly with regard to its length and the number, distribution, and arrangement of its double bonds. Previous investigations did not differentiate the effects of the different tails, only those of the heads.

Carsten Schultz and a team from the European Molecular Biology Laboratory (EMBL) in Heidelberg have now taken on this challenge. They synthesized DAG lipids with a variety of tails and locked their glycerol heads into “cages” – molecules attached so as to block and deactivate the head group.

The cages are designed with a built-in “break-away” point that breaks open upon irradiation with light to release the DAG. These types of photoactivatable molecules make it possible to deliver biologically active signal molecules at a specific time and place with subcellular resolution.

Through these experiments, the researchers were able to demonstrate that the activation of PKC is locally limited by DAG, whereas the elevation of internal calcium ion concentration through activation of calcium channels affects the entire cell. Surprisingly, these effects seem to be dependent on the fatty acid composition of the lipid. One of the DAG variants thus induced fewer, shorter, and weaker elevations of the calcium level, while another caused stronger, long-lasting calcium signals. A third had no significant influence on the intracellular calcium concentration.

“If this variability concerning the fatty acid composition should influence the control of cellular processes in most lipids, a completely new level of complexity has to be considered in cell biology”, says Schultz. “Furthermore, our results demonstrate that cells can respond to a given spatially confined signal both with a local and a global response pattern. Local signaling is particularly important in polarized and migrating cells, where different signals are needed at opposite ends of the cell.”

About the Author
Dr Carsten Schultz is an interdisciplinary team leader and Senior Scientist at the European Molecular Biology Laboratory (EMBL) in Heidelberg. His main research fields include the manipulation and visualization of intracellular signal transduction networks by using chemical biology, as well as the development of fluorescent detection systems, for example in applications concerning chronic lung disorders within the framework of the German Center for Lung Research (DZL) in Heidelberg.
Author: Carsten Schultz, European Molecular Biology Laboratory, Heidelberg (Germany), http://www.embl.de/research/units/cbb/schultz/members/index.php?s_personId=CP-60002438
Title: The Fatty Acid Composition of Diacylglycerols Determines Local Signaling Patterns

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201301716

Carsten Schultz | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>