Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Havoc in biology’s most-used human cell line

13.03.2013
Genome of HeLa cells sequenced for the first time
In a nutshell:
• Scientists deliver the first high-resolution sequence of HeLa cells, a key research tool for human disease and general biology

• Sequence analysis reveals the full extent to which HeLa cells are different to the Human Genome Project reference

• Resource could enhance the quality of research using HeLa cells

HeLa cells are the world’s most commonly used human cell lines, and have served as a standard for understanding many fundamental biological processes. In a study published today in G3: Genes, Genomes and Genetics online, scientists at the European Molecular Biology Laboratory in Heidelberg, announce they have successfully sequenced the genome of a HeLa cell line. It provides a high-resolution genomic reference that reveals the striking differences between the HeLa genome and that of normal human cells. The study could improve the way HeLa cells are used to model human biology.

The scientists’ analysis of the HeLa genome revealed widespread abnormalities in both the number and structure of chromosomes, as well as factors commonly associated with cancer cells like losing healthy copies of genes. In particular, the researchers found that countless regions of the chromosomes in each cell were arranged in the wrong order and had extra or fewer copies of genes. This is a telltale sign of chromosome shattering, a recently discovered phenomenon associated with 2-3% of all cancers.

Knowledge of the genetic landscape of these cells can inform the design of future studies using HeLa cells, and strengthen the biological conclusions that can be made from them.

“The results provide the first detailed sequence of a HeLa genome,” explain Jonathan Landry and Paul Pyl from EMBL, who carried out the research. “It demonstrates how genetically complex HeLa is compared to normal human tissue. Yet, possibly because of this complexity, no one had systematically sequenced the genome, until now.”

“Our study underscores the importance of accounting for the abnormal characteristics of HeLa cells in experimental design and analysis, and has the potential to refine the use of HeLa cells as a model of human biology,” adds Lars Steinmetz from EMBL, who led the project.

For decades HeLa cells have provided effective and easily usable biological models for researching human biology and disease. They are widely regarded as the ‘industry standard’ tool for studying human biology. Studies using them have led to two Nobel prizes and a host of advancements in many areas, including cancer, HIV/AIDS and the development of the polio vaccine. The HeLa genome had never been sequenced before, and modern molecular genetic studies using HeLa cells are typically designed and analysed using the Human Genome Project reference. This, however, misrepresents the sequence chaos that characterises HeLa cells, since they were derived from a cervical tumour and have since been adapting in laboratories for decades.

The study provides a high-resolution genetic picture of a key research tool for human biology. It highlights the extensive differences that cell lines can have from the human reference, indicating that such characterisation is important for all research involving cell lines and could improve the insights they deliver into human biology.

Policy regarding use
EMBL press and picture releases including photographs, graphics and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.
Raeka Aiyar
Scientific communications officer
European Molecular Biology Laboratory - EMBL
Heidelberg, Germany,
T: +49 6221 387 8196
raeka.aiyar@embl.de
Isabelle Kling
Communications officer
European Molecular Biology Laboratory - EMBL
Heidelberg, Germany
T: +49 6221 387 8355
isabelle.kling@embl.de

Isabelle Kling | EMBL Research News
Further information:
http://www.embl.org
http://www.commhere.eu/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>