Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hatchery fish may hurt efforts to sustain wild salmon runs

12.06.2009
Steelhead trout that are originally bred in hatcheries are so genetically impaired that, even if they survive and reproduce in the wild, their offspring will also be significantly less successful at reproducing, according to a new study published today by researchers from Oregon State University.

The poor reproductive fitness – the ability to survive and reproduce – of the wild-born offspring of hatchery fish means that adding hatchery fish to wild populations may ultimately be hurting efforts to sustain those wild runs, scientists said.

The study found that a fish born in the wild as the offspring of two hatchery-reared steelhead averaged only 37 percent the reproductive fitness of a fish with two wild parents, and 87 percent the fitness if one parent was wild and one was from a hatchery. Most importantly, these differences were still detectable after a full generation of natural selection in the wild.

The effect of hatcheries on reproductive fitness in succeeding generations had been predicted in theory, experts say, but until now had never been demonstrated in actual field experiments.

"If anyone ever had any doubts about the genetic differences between hatchery and wild fish, the data are now pretty clear," said Michael Blouin, an OSU professor of zoology. "The effect is so strong that it carries over into the first wild-born generation. Even if fish are born in the wild and survive to reproduce, those adults that had hatchery parents still produce substantially fewer surviving offspring than those with wild parents. That's pretty remarkable."

An earlier report, published in 2007 in the journal Science, had already shown that hatchery fish that migrate to the ocean and return to spawn leave far fewer offspring than their wild relatives. The newest findings suggest the problem does not end there, but carries over into their wild-born descendants.

The implication, Blouin said, is that hatchery salmonids – many of which do survive to reproduce in the wild– could be gradually reducing the fitness of the wild populations with which they interbreed. Those hatchery fish provide one more hurdle to overcome in the goal of sustaining wild runs, along with problems caused by dams, loss or degradation of habitat, pollution, overfishing and other causes.

Aside from weakening the wild gene pool, the release of captive-bred fish also raises the risk of introducing diseases and increasing competition for limited resources, the report noted.

This research, which was just published in Biology Letters, was supported by grants from the Bonneville Power Administration and the Oregon Department of Fish and Wildlife. It was based on years of genetic analysis of thousands of steelhead trout in Oregon's Hood River, in field work dating back to 1991. Scientists have been able to genetically "fingerprint" three generations of returning fish to determine who their parents were, and whether or not they were wild or hatchery fish.

The underlying problem, experts say, is Darwinian natural selection.

Fish that do well in the safe, quiet world of the hatcheries are selected to be different than those that do well in a much more hostile and predatory real-world environment. Using wild fish as brood stock each year should lessen the problem, but it was just that type of hatchery fish that were used in the Hood River study. This demonstrates that even a single generation of hatchery culture can still have strong effects.

Although this study was done with steelhead trout, it would be reasonable to extrapolate its results to other salmonids, researchers said. It's less clear what the findings mean to the many other species that are now being bred in captivity in efforts to help wild populations recover, Blouin said, but it's possible that similar effects could be found.

Captive breeding is now a cornerstone of recovery efforts by conservation programs for many threatened or endangered species, the researchers noted in their report. Thousands of species may require captive breeding to prevent their extinction in the next 200 years – which makes it particularly important to find out if such programs will ultimately work. This study raises doubts.

"The message should be clear," the researchers wrote in their report's conclusion. "Captive breeding for reintroduction or supplementation can have a serious, long-term downside in some taxa, and so should not be considered as a panacea for the recovery of all endangered populations."

About the OSU College of Science: As one of the largest academic units at OSU, the College of Science has 14 departments and programs, 13 pre-professional programs, and provides the basic science courses essential to the education of every OSU student. Its faculty are international leaders in scientific research.

Michael Blouin | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>