Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harvard Stem Cell researchers create cells that line blood vessels

23.08.2013
Work has important treatment implications

In a scientific first, Harvard Stem Cell Institute scientists have successfully grown the cells that line the blood vessels—called vascular endothelial cells—from human induced pluripotent stem cells (iPSCs), revealing new details about how these cells function.

Using a unique approach, the researchers induced the differentiation of specific cell types by generating mechanical forces on the surface of the iPSC-derived endothelium mimicking the flow of blood. For example, cells that felt a stronger "flow" became artery cells, while those that felt a weaker "flow" became vein cells.

"It was especially exciting to us to discover that these cells are basically responding to biomechanical cues," research leader Guillermo García-Cardena, PhD, an HSCI Affiliated Faculty member, said. "By exposing cells to 'atheroprone flow,' we can direct differentiation of these cells into cells that are present in areas of the circulatory system that we know are affected by diseases like atherosclerosis."

García-Cardena is now working on modeling the formation of arterial plaques using human iPSC-derived vascular endothelial cells and identifying potential drugs that might prevent plaque formation.

García-Cardena's team, which included Harvard School of Engineering and Applied Sciences graduate student William Adams, found that the iPS-derived human endothelial cells display three critical functions carried out by mature endothelium in the body: mounting inflammatory responses, keeping blood from leaking out of the blood vessel, and preventing blood clots.

Based on this information, García-Cardena's work, published this month in the journal Stem Cell Reports, has another exciting implication—it could potentially reduce, or even eliminate the need for heparin use during kidney dialysis and lung failure treatment—making both markedly safer.

Traditionally, patients undergoing dialysis are treated with heparin, a powerful drug, which prevents the blood from clotting as it's routed through the dialysis machine. While heparin is quite effective in preventing clotting, because it considerably thins the blood, it can also cause loss of blood, internal bleeding, and interfere with the healing process.

"The iPSC-derived endothelial cells cells beautifully function as an anticoagulant surface," said García-Cardena, an Associate Professor of Pathology at Harvard Medical School and Brigham and Women's Hospital. "In the future, we may take a tissue sample from a patient, generate iPSCs, and then cover an extracorporeal device with the patient's own endothelial cells—so the patient can go home with the device without the need for regular heparin shots."

The National Institutes of Health funded this research.

Research Cited: Functional Vascular Endothelium Derived from Human Induced Pluripotent Stem Cells. Stem Cell Reports. August 6, 2013

by Joseph Caputo

B. D. Colen | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>