Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harnessing the Divas of the Nanoworld

15.01.2010
Boron nitride nanotubes (BNNTs) are the divas of the nanoworld. In possession of alluring properties, they are also notoriously temperamental compared to their carbon-based cousins.

On the plus side, they can withstand incredibly high heat, well over 1,100 degrees Celsius, says Yoke Khin Yap, an associate professor of physics at Michigan Technological University.

“Carbon nanotubes would burn like charcoal in a barbecue at half of those temperatures,” he says. And the electrical properties of BNNTs are remarkably uniform. Perfect insulators, boron nitride nanotubes could be doped with other materials to form designer semiconductors that could be used in high-powered electronics.

Unfortunately, making nanotubes from boron and nitrogen is easier said than done. “Making carbon nanotubes is simpler, like cooking,” says Yap. Boron nitride nanotubes, on the other hand, have always been fussy, requiring special instrumentation, dangerous chemistry, or temperatures of over 1,500 degrees Celsius to assemble. Even at that, the products are shot through with impurities.

“We’ve been stuck for more than 10 years because nobody could grow them well on substrates,” says Yap. “But now we can.”

As it turns out, boron nitride nanotubes just needed a little encouragement. Yap and his team have grown virtual Persian carpets of the tiny fibers on a substrate made from simple catalysts, magnesium oxide, iron or nickel. And they have managed it using the same instrumentation for growing carbon nanotubes, at about 1,100 degrees Celsius. And, their quality is perfect,.the present work. “I hope this encourages more researchers to grow BNNTs using the new technique,” said Yap.

The boron nitride nanotubes can be made to assemble exclusively on these catalysts, so the researchers can control precisely where they grow. “You could write ‘Michigan Tech’ in nanotubes,” says Yap.

These transparent nanotube sheets have another interesting property: they shed water like a duck’s back, a quality known as the lotus effect. “Water just slides away,” he says. “Anything coated with it would not only be stain resistant, it would be protected from anything water-soluble.” This superhydrophobicity holds at all pH levels, so anything coated with it would be protected from even the strongest acids and alkalies.

The research was funded through a National Science Foundation Career Grant. A paper detailing Yap’s discoveries, “Patterned Growth of Boron Nitride Nanotubes by Catalytic Chemical Vapor Deposition,” has been published online by the journal Chemistry of Materials.

Yap is the editor of the book “B-C-N Nanotubes and Related Nanostructures,” the first book on nanostructures constructed from one or multiple elements using boron, carbon, and nitrogen. He was the lead organizer of the Nanotubes and Related Nanostructures Symposium at the 2009 Materials Research Society Fall Meeting on. For more information, visit www.phy.mtu.edu/yap/research.html .

Michigan Technological University (mtu.edu) is a leading public research university developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 130 undergraduate and graduate degree programs in engineering; forest resources; computing; technology; business; economics; natural, physical and environmental sciences; arts; humanities; and social sciences.

Marcia Goodrich | EurekAlert!
Further information:
http://www.mtu.edu

Further reports about: BNNTs Divas Harnessing Nanostructures Nanotube Yap carbon nanotubes nanoworld social science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature

28.06.2017 | Power and Electrical Engineering

Zeolite catalysts pave the road to decentral chemical processes Confined space increases reactivity

28.06.2017 | Life Sciences

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>